Skip to main content

Transpulmonary Thermodilution

  • Chapter
  • First Online:
Advanced Hemodynamic Monitoring: Basics and New Horizons

Abstract

The transpulmonary thermodilution (TPTD) technique has gained a wide clinical recognition for the management of critically ill patients with shock, multiple organ failure, ARDS, overhydration, pulmonary edema, severe trauma and burns, as well as in high-risk surgical procedures. Being less invasive and more informative compared with pulmonary artery catheterization, the TPTD technique provides relevant clinical information on cardiac output, preload, global systolic function, and pulmonary edema. This procedure requires a known volume of a cold indicator to be injected via the central venous catheter and a thermistor-tipped catheter (usually, placed in the femoral artery) to register the changes in the temperature of the circulating blood. The monitor generates inverse TPTD curve and calculates cardiac output using the Stewart-Hamilton principle. In addition to cardiac output, several other variables can be calculated based on the time intervals for passing indicator and the decay part of thermodilution curve, including global end-diastolic volume and extravascular lung water. For the correct bedside application of TPTD, the operator must comply with several conditions and keep in mind the specific limitations of the derived volumetric parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakka SG, Rühl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, Meier-Hellmann A. Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med. 2000;26:180–7.

    Article  CAS  Google Scholar 

  2. Monnet X, Teboul JL. Transpulmonary thermodilution: advantages and limits. Crit Care. 2017;21:147.

    Article  Google Scholar 

  3. Huber W, Kraski T, Haller B, Mair S, Saugel B, Beitz A, et al. Room-temperature vs. iced saline indicator injection for transpulmonary thermodilution. J Crit Care. 2014;29:1133.e7–1133.e14.

    Article  Google Scholar 

  4. Hofkens PJ, Verrijcken A, Merveille K, et al. Common pitfalls and tips and tricks to get the most out of your transpulmonary thermodilution device: results of a survey and state-of-the-art review. Anaesthesiol Intensive Ther. 2015;47(2):89–116. https://doi.org/10.5603/AIT.a2014.0068.

    Article  PubMed  Google Scholar 

  5. Michard F. Looking at transpulmonary thermodilution curves: the cross-talk phenomenon. Chest. 2004;126:656–7.

    Article  Google Scholar 

  6. Michard F, Alaya S, Medkour F. Monitoring right-to-left intracardiac shunt in acute respiratory distress syndrome. Crit Care Med. 2004;32:308–9.

    Article  Google Scholar 

  7. Nusmeier A, van der Hoeven JG, Lemson J. Interpretation of the transpulmonary thermodilution curve in the presence of a left-to-right shunt. Intensive Care Med. 2011;37:550–1.

    Article  Google Scholar 

  8. Geith S, Stecher L, Rabe C, et al. Sustained low efficiency dialysis should not be interrupted for performing transpulmonary thermodilution measurements. Ann Intensive Care. 2018;8:113.

    Article  Google Scholar 

  9. Sakka SG. Influence of an extracorporeal lung assist system on transpulmonary thermodilution-derived variables. Br J Anaesth. 2010;104:664–5.

    Article  CAS  Google Scholar 

  10. Herner A, Lahmer T, Mayr U, et al. Transpulmonary thermodilution before and during venovenous extracorporeal membrane oxygenation ECMO: an observational study on a potential loss of indicator into the extracorporeal circuit [published online ahead of print, 2019 Nov 5]. J Clin Monit Comput. 2020;34(5):923–36. https://doi.org/10.1007/s10877-019-00398-6.

    Article  PubMed  Google Scholar 

  11. Bigatello LM, Kistler EB, Noto A. Limitations of volumetric indices obtained by trans-thoracic thermodilution. Minerva Anestesiol. 2010;76(11):945–9.

    CAS  PubMed  Google Scholar 

  12. Saugel B, Phillip V, Ernesti C, et al. Impact of large-volume thoracentesis on transpulmonary thermodilution-derived extravascular lung water in medical intensive care unit patients. J Crit Care. 2013;28:196–201.

    Article  Google Scholar 

  13. Roch A, Michelet P, D’Journo B, et al. Accuracy and limits of transpulmonary dilution methods in estimating extravascular lung water after pneumonectomy. Chest. 2005;128:927–33.

    Article  Google Scholar 

  14. Michard F. Bedside assessment of extravascular lung water by dilution methods: temptations and pitfalls. Crit Care Med. 2007;35:1186–92.

    Article  Google Scholar 

  15. Antonini M, Meloncelli S, Dantimi C, Tosti S, Ciotti L, Gasparetto A. The PiCCO system with brachial-axillary artery access in hemodynamic monitoring during surgery of abdominal aortic aneurysm. Minerva Anestesiol. 2001;67:447–56.

    CAS  PubMed  Google Scholar 

  16. Gavelli F, Teboul J–L, Azzolina D, et al. Transpulmonary thermodilution detects rapid and reversible increases in lung water induced by positive end-expiratory pressure in acute respiratory distress syndrome. Ann Intensive Care. 2020;10:28. https://doi.org/10.1186/s13613-020-0644-2.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Haas SA, Trepte CJ, Nitzschke R, et al. An assessment of global end-diastolic volume and extravascular lung water index during one-lung ventilation: is transpulmonary thermodilution usable? Anesth Analg. 2013;117(1):83–90.

    Article  Google Scholar 

  18. Hamzaoui O, Monnet X, Richard C, Osman D, Chemla D, Teboul JL. Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period. Crit Care Med. 2008;36:434–40.

    Article  Google Scholar 

  19. Combes A, Berneau JB, Luyt CE, Trouillet JL. Estimation of left ventricular systolic function by single transpulmonary thermodilution. Intensive Care Med. 2004;30:1377–83. https://doi.org/10.1007/s00134-004-2289-2.

    Article  PubMed  Google Scholar 

  20. Jabot J, Monnet X, Bouchra L, Chemla D, Richard C, Teboul JL. Cardiac function index provided by transpulmonary thermodilution behaves as an indicator of left ventricular systolic function. Crit Care Med. 2009;37(11):2913–8. https://doi.org/10.1097/ccm.0b013e3181b01fd9.

    Article  PubMed  Google Scholar 

  21. Michard F, Alaya S, Zarka V, et al. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest. 2003;124:1900–8. https://doi.org/10.1378/chest.124.5.1900.

    Article  PubMed  Google Scholar 

  22. Beurton A, Teboul JL, Monnet X. Transpulmonary thermodilution techniques in the haemodynamically unstable patient. Curr Opin Crit Care. 2019;25:273–9.

    Article  Google Scholar 

  23. Belda FJ, Aguilar G, Teboul JL, Pestaña D, Redondo FJ, Malbrain M, Luis JC, Ramasco F, Umgelter A, Wendon J, Kirov M, Fernández-Mondéjar E, for the PICS Investigators Group. Complications related to less-invasive haemodynamic monitoring. Br J Anaesth. 2011;106:482–6.

    Article  CAS  Google Scholar 

  24. Vincent JL, Rhodes A, Perel A, et al. Clinical review: update on hemodynamic monitoring - a consensus of 16. Crit Care. 2011;15(4):229. https://doi.org/10.1186/cc10291.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cecconi M, De Backer D, Antonelli M, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vsevolod V. Kuzkov .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

(MP4 275481 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fot, E.V., Kuzkov, V.V. (2021). Transpulmonary Thermodilution. In: Kirov, M.Y., Kuzkov, V.V., Saugel, B. (eds) Advanced Hemodynamic Monitoring: Basics and New Horizons. Springer, Cham. https://doi.org/10.1007/978-3-030-71752-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71752-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71751-3

  • Online ISBN: 978-3-030-71752-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics