Skip to main content

Banking of Heart Valves

  • Chapter
  • First Online:
Essentials of Tissue and Cells Banking
  • 512 Accesses

Abstract

Human heart valves have been used in transplant surgery for nearly sixty years and banking of valves has been performed for the majority of this time. Cardiac valves have been disinfected using chemical agents, radiation and in present times by antibiotics and stored freeze dried or in solution at +4 ℃, solid carbon dioxide and nowadays in the vapour phase of liquid nitrogen refrigerators. Heart valve banks have a list of criteria that valves must meet with relation to age of donor, atheroma, fenestrations and absence of virological markers. Cardiac valves are normally tested for microbiological contamination at least twice during their processing. The main research topics of interest in the development of heart valve banking today concern ensuring that the mechanical properties of the valves are maintained, whether it is advantageous to decellularize the valves as this lowers immune response and if vitrification could be a storage method for the future as this could alleviate the need for low temperature during transportation. Consideration also needs to be made as to whether matching of valves improves results. In the early days of heart valve banking, most hospitals processed their own valves but in the twenty-first century most banking is performed by centralized units which may be companies, national blood services or banks that are a collaborative between hospitals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross DN (1962) Homograft replacement of the aortic valve. Lancet 2(7254):487

    Article  CAS  Google Scholar 

  2. Starr A, Herr RH, Wood JA (1965) The present status of valve replacement. Acta Chirurgia Scand 374:1–87

    CAS  Google Scholar 

  3. Bjork VO, Holmgren A, Olin C, Ovenfors CO (1971) Clinical and haemodynamic results of aortic valve replacement with Bjork-Shiley tilting disc valve prosthesis. Scand J Thorac Cardiovasc Surg 5:177–191

    Article  CAS  Google Scholar 

  4. Carpentier A (1971) The concept of biorposthesis. Thoraxchirurgie Vaskulare Chirurgie 19:379–383

    CAS  Google Scholar 

  5. Mary DA, Pakrashi BC, Catchpole DW, Ionescu MI (1975) Tissue valves in the mitral position: 5 years experience. Br Heart J 37:1123–1132

    Article  CAS  Google Scholar 

  6. Ionescu MI, Ross DN, Deac R et al (1970) Autologous fascia lata for heart valve replacement. Thorax 25:46–56

    Article  CAS  Google Scholar 

  7. Zerbini EJ (1975) Results of replacement of cardiac valves by homologous dura mater valves. Chest 67:706–710

    Article  CAS  Google Scholar 

  8. Deac RF, Simionescu D, Deac D (1995) New evolution in mitral physiology and surgery: mitral stentless pericardial valve. Ann Thorac Surg 60:5433–5438

    Article  Google Scholar 

  9. Acar C, Tolan M, Berrebi A et al (1996) Homograft replacement of the mitral valve selection, technique of implantation and results in 43 patients. J Thorac Cardiovasc Surg 111:367–380

    Article  CAS  Google Scholar 

  10. Agvirregoicoa V, Kearney JN, Davies GA, Gowland G (1989) Effects of antifungals on viability of heart valve cusp derived fibroblasts. Cardiovasc Res 23:1058–1061

    Article  Google Scholar 

  11. Brockbank KG, Dawson PE (1993) Cytotoxicity of amhotericin B for fibroblasts in human heart valve leaflets. Cryobiology 30:19–24

    Article  CAS  Google Scholar 

  12. Birtsas V, Armitage WJ (2005) Heart valve cryopreservation: Protocol for addition of dimethyl sulphoxide and amelioration of putative amphotericin B toxicity. Cryobiology 50:139–143

    Article  CAS  Google Scholar 

  13. Waterworth PM, Lockey E, Berry EM, Pearce HM (1974) A critical investigation into the antibiotic sterilization of heart valve homografts. Thorax 29:432–436

    Article  CAS  Google Scholar 

  14. Wain WH, Pearce HM, Riddell RW, Ross DN (1977) A re-evaluation of antibiotic sterilization of heart valve allografts. Thorax 32:740–742

    Article  CAS  Google Scholar 

  15. Yacoub M, Kittle CF (1970) Sterilization of valve homografts by antibiotic solutions. Circulation 41(Suppl II):29–32

    Google Scholar 

  16. Leeming JP, Lovering AM, Hunt CJ (2005) Residual antibiotics in heart valve tissue samples following antibiotic disinfection. J Hosp Infec 60:231–234

    Google Scholar 

  17. Anyanwu CH, Nassau E, Yacoub M (1976) Miliary tuberculosis following homograft valve replacement. Thorax 31:101–106

    Article  CAS  Google Scholar 

  18. Warwick RM, Magee JG, Leeming JP et al (2008) Mycobacteria and allograft heart valve banking: an international survey. J Hosp Infect 68:255–261

    Article  CAS  Google Scholar 

  19. Mirabet V, Carda C, Solves P et al (2008) Long Term storage in liquid nitrogen does not affect cell viability in cardiac valve allografts. Cryobiol 57:113–121

    Google Scholar 

  20. Hunt CJ, Song YC, Bateson EAJ, Pegg DE (1994) Fractures in Ccyopreserved arteries. Cryobiol 31(5):506–515

    Google Scholar 

  21. Wassenaar C, Wijsmuller EG, Van Herwerden LA et al (1995) Cracks in cryopreserved aortic allografts and rapid thawing. Ann Thorac Surg 60:S165–S167

    Google Scholar 

  22. Wright JEC, Ng YL (1974) Elasticity of human aortic valve cusps. Cardiovasc Res 8:384–390

    Google Scholar 

  23. Wassenaar C, Bax WA, Van Suylen RJ et al (1997) Effects of cryopreservation on contractile properties of porcine isolated aortic valve leaflets and aortic wall. J Thorac Cardiovasc Surg 113:165–172

    Google Scholar 

  24. Vesely I, Gonzalez Lavin L, Graf D, Bouchner D (1990) Mechanical testing of cryopreserved aortic allografts, comparison with xenografts and fresh tissue. J Thorac Cardiovasc Surg 99:119–123

    Google Scholar 

  25. Gall K, Smith SE, Willmette CA, O’Brien M (1998) Allograft heart valve viability and valve processing variables. Ann Thorac Surg 65:1032–1038

    Google Scholar 

  26. Yacoub M, Rasmi NR, Sundt TM et al (1995) Fourteen year experience with homovital homografts for aortic valve replacement. J Thorac Cardiovasc Surg 110:186–194

    Google Scholar 

  27. Elkins RC, Lane NM, Cappa SB et al (2001) Humoral immune response to allograft valve tissue pretreated with an antigen reduction process. Sem Thorac Cardiovasc Surg 13:82–86

    Google Scholar 

  28. Da Costa FDA, Costa ACBA, Prestes $R et al (2010) The early and mid term function of decellularised aortic valve allografts. Ann Thorac Surg 90:1854–1861

    Google Scholar 

  29. Cebotari S, Tudorache I, Ciubotaru A et al (2011) Use of fresh decellularised allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: early report. Circ 124:S115–S123

    Google Scholar 

  30. Neumann A, Sarikouch S, Breymann T et al (2014) Early systemic cellular immune response in children and young adults receiving decellularised fresh allografts for pulmonary valve replacement. Tissue Eng A 20:1003–1011

    Google Scholar 

  31. Vaface T, Thomas D, Desai A et al (2016) Decellularization of human aortic and pulmonary valve conduits using low concentration sodium dodecyl sulphate. J Tissue Eng regen Med. https://doi.org/10.1002/term2391

  32. Desai A, Vafaee T, Rooney P, Kearney JN, Berry HE, Ingham E, Fisher J, Jennings LM (2018) In vitro biomechanical and hydrodynamic characterisation of decellularised human pulmonary and aortic roots. J Mech Behav Biomed Mater 79:53–63

    Google Scholar 

  33. VeDepo M, Detamore M, Hopkins R, Converse G (2017) Recellularization of decellularized heart valves: progress toward the tissue engineered heart valve. J Tissue Eng 8:2041731417726327

    Google Scholar 

  34. Konuma T, Devaney E, Bove E et al (2009) Performance of Cryolife SG decellularized pulmonary allografts compared with standard cryopreserved allografts. Ann Thorac Surg 88:849–855

    Google Scholar 

  35. Helder MRK, Kouchoukos N, Zehr K et al (2016) Late durability of decellulrized allografts for aortic valve replacement: a word of caution. J Thorac Cardiovasc Surg 152:1197–1199

    Google Scholar 

  36. Da Costa FDA, Etnel JRG, Charitos EI et al (2018) Decellularized versus standard pulmonary allografts in the Ross Procedure: propensity-matched analysis. Ann Thorac Surg 105:1205–1213

    Google Scholar 

  37. Sarikouch S, Horke A, Tudorache I et al (2016) Decellularized fresh homografts for pulmonary valve replacement: a decade of clinical experience. Eur J Cardiothorac Surg 50:281–290

    Google Scholar 

  38. Yves d’Udekem, (2016) Decellularized homografts: in fashion or really superior?. Eur J Cardio-Thorac Surg 50(2):291–292

    Google Scholar 

  39. Brockbank K, Chen Z, Greene E, Campbell L (2015) Vitrification of heart valve tissues. Methods Mol Biol 1257:399–421

    Google Scholar 

  40. Huber A, Aberle T, Schleicher M et al (2013) Characterization of a simplified ice-free cryopreservation method for heart valves. Cell Tissue Bank 14:195–203

    Google Scholar 

  41. Boll BM, Vogt F, Boulesteix AL, Schmitz C (2015) Gender mismatch in allograft aortc valve surgery. Interact Cardiovasc Thorac Surg 21:329–335

    Google Scholar 

  42. Vogt F, Böll BM, Boulesteix A-L, Kilian E, Santarpino G, Reichart B, Schmitz C (2013) Homografts in aortic position: does blood group incompatibility have an impact on patient outcomes?†. Interact Cardiovasc Thorac Surg 16(5):619–624

    Google Scholar 

  43. Spacek M, Pavel M et al (2018) Organization model for allotransplantations of cryopreserved vascular grafts in Czech Republic. Cell Tissue Bank 19:437–445

    Google Scholar 

  44. Heng WL, Seck T, Chiew PT et al (2013) Homograft Banking in Singapore: two years of cardiovascular tissue banking in sotheast asia. Cell Tissue Bank 14:187–194

    Google Scholar 

  45. Hoque R, Rashid Z, Sarkov SK (2007) Antibiotic sterilization of cadaveric homograft aortic valve for clinical use. Bangladesh Med Res Counc Bull 33(2):69–72

    Google Scholar 

  46. Verghese S, Padmaja P, Sindhu B et al(2004) Homograft valve bank:our experience in valve banking. Indian Heart J 56(4):299–306

    Google Scholar 

  47. Brockbank KM, Lightfoot FG, Song YC, Taylor MJ (2000) Interstitial ice formation in cryopreserved homografts: a possible cause of tissue deterioration and calcification in vivo. J Heart Valve Dis 9:200–206

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parker, R. (2021). Banking of Heart Valves. In: Galea, G., Turner, M., Zahra, S. (eds) Essentials of Tissue and Cells Banking. Springer, Cham. https://doi.org/10.1007/978-3-030-71621-9_5

Download citation

Publish with us

Policies and ethics