Skip to main content

Psychiatric Disorders in Animal Models of Schizophrenia

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity
  • 49 Accesses

Abstract

Schizophrenia is a devastating mental illness in which characteristic symptoms appear, including “positive” (i.e., hallucinations and delusions), “negative” (i.e., anhedonia, lack of motivation, and social withdrawal), and cognitive symptoms (i.e., memory and cognitive deficits). The causes of schizophrenia are still unknown. The dopaminergic hypothesis suggests that hyperfunction of the mesolimbic dopamine system is the cause of the appearance of “positive” symptoms of schizophrenia. In contrast, the glutamatergic hypothesis focuses on the hypofunction of the NMDA receptor, which is preferentially expressed on GABAergic interneurons in cortical regions. To date, there is no effective treatment for schizophrenia that would eliminate all the symptoms characteristic of this disease. 1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) is an endogenous compound that is found in plants as well as in mammalian brains. 1MeTIQ affects a number of neurotransmitter systems (e.g., dopaminergic, serotonergic, noradrenergic, and glutamatergic) in the brain by modulating their activity. This compound exhibits a number of beneficial effects, including neuroprotective, antiaddictive, and antidepressant-like properties. Moreover, 1MeTIQ has shown anxiolytic properties in the elevated plus maze (EPM) test and demonstrated pro-cognitive effects in the novel object recognition (NOR) test in a ketamine model of schizophrenia. The antipsychotic potential of 1MeTIQ is similar to that of olanzapine, which is an antipsychotic drug. However, in the prepulse inhibition test (PPI), which is a model of the negative symptoms of schizophrenia, 1MeTIQ did not inhibit the MK-801-induced memory impairment or sensorimotor gating deficits. In conclusion, 1MeTIQ will be useful as a drug to reduce positive but not negative symptoms of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

1H MRS:

Proton magnetic resonance spectroscopy

1MeTIQ:

1-Methyl-1,2,3,4-tetrahydroisoquinoline

3-MT:

3-Methoxytyramine

5-HT:

Serotonin

CPu:

Caudate putamen

EPM:

Elevated plus maze test

GABA:

gamma-Aminobutyric acid

GAD:

Glutamate decarboxylase

MAM:

Methylazoxymethanol acetate

MK-801:

Dizocilpine

mPFC:

Medial prefrontal cortex

MS:

Maternal separation

MSNs:

Medium spiny neurons

NAS:

Nucleus accumbens

NMDA:

N-methyl-D-aspartate

NOR:

Novel object recognition test

PCP:

Phencyclidine

PEA:

Phenylethylamine

PET:

Positron-emission tomography

PLC:

Prelimbic cortex

PPI:

Prepulse inhibition test

ROS:

Reactive oxygen species

References

  • Adell, A. (2020). Brain NMDA receptors in schizophrenia and depression. Biomolecules, 10(6), 947. Published: 23 June 2020.

    Google Scholar 

  • Antkiewicz-Michaluk, L., Lazarewicz, J. W., Patsenka, A., Kajta, M., Ziemińska, E., Salińska, E., Wąsik, A., Gołembiowska, K., & Vetulani, J. (2006). The mechanism of 1,2,3,4-tetrahydroisoquinolines neuroprotection: The importance of free radicals scavenging properties and inhibition of glutamate-induced excitotoxicity. Journal of Neurochemistry, 97, 846–856.

    Article  CAS  Google Scholar 

  • Antkiewicz-Michaluk, L., Michaluk, J., Mokrosz, M., Romańska, I., Lorenc-Koci, E., Ohta, S., & Vetulani, J. (2001). Different action on dopamine catabolic pathways of two endogenous 1,2,3,4- tetrahydroisoquinolines with similar antidopaminergc properties. Journal of Neurochemistry, 78, 100–108. https://doi.org/10.1046/j.1471-4159.2001.00391.x

    Article  CAS  PubMed  Google Scholar 

  • Białoń, M., Żarnowska, M., Antkiewicz-Michaluk, L., & Wąsik, A. (2020). Pro-cognitive effect of 1MeTIQ on recognition memory in the ketamine model of schizophrenia in rats: the behavioural and neurochemical effects. Psychopharmacology, 237(6), 1577–1593. https://doi.org/10.1007/s00213-020-05484-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, A. S. (2006). Prenatal infection as a risk factor for schizophrenia. Schizophrenia Bulletin, 32(2), 200–202. https://doi.org/10.1093/schbul/sbj052

    Article  PubMed  PubMed Central  Google Scholar 

  • Bubenikova, V., Votava, M., Horácek, J., Pálenícek, T., & Dockery, C. (2005). The effect of zotepine, risperidone, clozapine and olanzapine on MK-801-disrupted sensorimotor gating. Pharmacology, Biochemistry, and Behavior, 80, 591–596.

    Article  CAS  Google Scholar 

  • Chocyk, A., Przyborowska, A., Makuch, W., Majcher-Maślanka, I., Dudys, D., & Wędzony, K. (2014). The effects of early-life adversity on fear memories in adolescent rats and their persistence into adulthood. Behavioural Brain Research, 264, 161–172. https://doi.org/10.1016/j.bbr.2014.01.040

    Article  PubMed  Google Scholar 

  • Conn, P. J., Lindsley, C. W., & Jones, C. K. (2009). Activation of metabotropic glutamate receptors as a novel approach for the treatment of schizophrenia. Trends in Pharmacological Sciences, 30, 25–31.

    Article  CAS  Google Scholar 

  • Danion, J. M., Rizzo, L., & Bruant, A. (1999). Functional mechanisms underlying impaired recognition memory and conscious awareness in patients with schizophrenia. Archives of General Psychiatry, 56(7), 639–644. https://doi.org/10.1001/archpsyc.56.7.639

    Article  CAS  PubMed  Google Scholar 

  • Ennaceur, A., & Delacour, J. (1988). A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behavioural Brain Research, 31(1), 47–59. https://doi.org/10.1016/0166-4328(88)90157-x

    Article  CAS  PubMed  Google Scholar 

  • Hereta, M., Kamińska, K., Białoń, M., Wąsik, A., Lorenc-Koci, E., & Rogóż, Z. (2020). Effect of combined treatment with aripiprazole and antidepressants on the MK-801-induced deficits in recognition memory in novel recognition test and on the release of monoamines in the rat frontal cortex. Behavioural Brain Research, 393, 112769. https://doi.org/10.1016/j.bbr.2020.112769

    Article  CAS  PubMed  Google Scholar 

  • Hjelm, B. E., Rollins, B., Mamdan, I. F., Lauterborn, J. C., Kirov, G., Lynch, G., Gall, C. M., Sequeira, A., & Vawter, M. P. (2015). Evidence of mitochondrial dysfunction within the complex genetic etiology of schizophrenia. Molecular Neuropsychiatry, 1, 201–219.

    Article  Google Scholar 

  • Howes, O. D., Kambeitz, J., Kim, E., Stahl, D., Slifstein, M., Abi-Dargham, A., & Kapur, S. (2012). The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Archives of General Psychiatry, 69(8), 776–786. https://doi.org/10.1001/archgenpsychiatry.2012.169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javitt, D. C. (1987). Negative schizophrenic symptomatology and the PCP (phencyclidine) model of schizophrenia. The Hillside Journal of Clinical Psychiatry, 9(1), 12–35.

    CAS  PubMed  Google Scholar 

  • Kegeles, L. S., Abi-Dargham, A., Frankle, W. G., Gil, R., Cooper, T. B., Slifstein, M., Hwang, D. R., Huang, Y., Haber, S. N., & Laruelle, M. (2010). Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Archives of General Psychiatry, 67(3), 231–239. https://doi.org/10.1001/archgenpsychiatry.2010.10

    Article  CAS  PubMed  Google Scholar 

  • Keith, V. A., Mansbach, R. S., & Geyer, M. A. (1991). Failure of haloperidol to block the effects of phencyclidine and dizcilpine on prepulse inhibition of startle. Biological Psychiatry, 30, 557–566.

    Article  CAS  Google Scholar 

  • Laruelle, M., Abi-Dargham, A., Gil, R., Kegeles, L., & Innis, R. (1999). Increased dopamine transmission in schizophrenia: relationship to illness phases. Biological Psychiatry, 46(1), 56–72. https://doi.org/10.1016/s0006-3223(99)00067-0

    Article  CAS  PubMed  Google Scholar 

  • Lee, D., Kim, K., Shim, M. S., Kim, S. Y., Ellisman, M. H., Weinreb, R. N., & Ju, W. K. (2014). Coenzyme Q10 ameliorates oxidative stress and prevents mitochondrial alteration in ischemic retinal injury. Apoptosis, 603–614. https://doi.org/10.1007/s10495-013-0956-x

  • Lee, J. H., Lee, S., & Kim, J. H. (2017). Amygdala circuits for fear memory: A key role for dopamine regulation. The Neuroscientist, 23(5), 542–553. https://doi.org/10.1177/1073858416679936

    Article  CAS  PubMed  Google Scholar 

  • Lesh, T. A., Niendam, T. A., Minzenberg, M. J., & Carter, C. S. (2011). Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology, 36(1), 316–338. https://doi.org/10.1038/npp.2010.156

    Article  PubMed  Google Scholar 

  • Lipska, B. K., & Weiberger, D. R. (2003). Animals models of schizophrenia. In S. R. Hirsch & D. R. Weinberger (Eds.), Schizophrenia (pp. 388–402). Blakwell Science.

    Chapter  Google Scholar 

  • Maes, M., Galeck, I. P., Chang, Y. S., & Berk, M. (2011). A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35(3), 676–692.

    Article  CAS  Google Scholar 

  • Maguire, A., Hargreaves, A., & Gill, M. (2018). Coenzyme Q10 and neuropsychiatric and neurological disorders: relevance for schizophrenia. Nutritional Neuroscience. https://doi.org/10.1080/1028415x2018.1556481

  • Majcher-Maślanka, I., Solarz, A., Wędzony, K., & Chocyk, A. (2017). The effects of early-life stress on dopamine system function in adolescent female rats. International Journal of Developmental Neuroscience, 57, 24–33. https://doi.org/10.1016/j.ijdevneu.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  • Makino, Y., Ohta, S., Tachikawa, O., & Hirobe, M. (1998). Presence of tetrahydroisoquinoline and 1-methyl-tetrahydro-isoquinoline in foods: compounds related to Parkinson’s disease. Life Sciences, 43, 373–378.

    Article  Google Scholar 

  • Martin, G. R. (1998). Advances in serotonin receptor research: Molecular biology, signal transduction, and therapeutics. New York Academy of Sciences.

    Google Scholar 

  • Moghaddam, B., Adams, B., Verma, A., & Daly, D. (1997). Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. The Journal of Neuroscience, 17, 2921–2927.

    Article  CAS  Google Scholar 

  • Mohn, A. R., Gainetdinov, R. R., Caron, M. G., & Koller, B. H. (1999). Mice withreduced NMDA receptor expression display behaviors related to schizophrenia. Cell, 98, 427–436.

    Article  CAS  Google Scholar 

  • Morris, G., Walder, K. R., Berk, M., Marx, W., Walker, A. J., Maes, M., Puri, B. K., et al. (2020). The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? Molecular Biology Reports, 47, 5587–5620.

    Article  CAS  Google Scholar 

  • Nieoullon, A., & Coquerel, A. (2003). Dopamine: A key regulator to adapt action, emotion, motivation and cognition. Current Opinion in Neurology, 16(Suppl 2), S3–S9.

    Article  CAS  Google Scholar 

  • Onozawa, K., Yagasaki, Y., Izawa, Y., Abe, H., & Kawakamik, Y. (2011). Amygdala-prefrontal pathways and the dopamine system affect nociceptive responses in the prefrontal cortex. BMC Neuroscience, 12, 115. https://doi.org/10.1186/1471-2202-12-115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietraszek, M., Michaluk, J., Romańska, I., Wasik, A., Gołembiowska, K., & Antkiewicz-Michaluk, L. (2009). 1-Methyl-1,2,3,4-tetrahydroisoquinoline antagonizes a rise in brain dopamine metabolism, glutamate release in frontal cortex and locomotor hyperactivity produced by MK-801 but not the discriptons of prepulse inhibition, and impairment of working memory in rat. Neurotoxicity Research, 16, 390–407.

    Article  CAS  Google Scholar 

  • Poels, E. M., Kegeles, L. S., Kantrowitz, J. T., Javitt, D. C., Lieberman, J. A., Abi-Dargham, A., & Girgis, R. R. (2014). Glutamatergic abnormalities in schizophrenia: A review of proton MRS findings. Schizophrenia Research, 152(2–3), 325–332. https://doi.org/10.1016/j.schres.2013.12.013

    Article  PubMed  Google Scholar 

  • Slifstein, M., van de Giessen, E., Van Snellenberg, J., Thompson, J. L., Narendran, R., Gil, R., Hackett, E., Girgis, R., Ojeil, N., Moore, H., D’Souza, D., Malison, R. T., Huang, Y., Lim, K., Nabulsi, N., Carson, R. E., Lieberman, J. A., & Abi-Dargham, A. (2015). Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: A positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiatry, 72(4), 316–324. https://doi.org/10.1001/jamapsychiatry.2014.2414

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonnenschein, S. F., Gomes, F. V., & Grace, A. A. (2020). Dysregulation of midbrain dopamine system and the pathophysiology of schizophrenia. Frontiers in Psychiatry, 11, 613. https://doi.org/10.3389/fpsyt.2020.00613. eCollection 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stubbendorff, C., & Stevenson, C. W. (2020). Dopamine regulation of contextual fear and associated neural circuit function. The European Journal of Neuroscience. https://doi.org/10.1111/ejn.14772

  • Toulopoulou, T., Rabe-Hesketh, S., King, H., Murray, R. M., & Morris, R. G. (2003). Episodic memory in schizophrenic patients and their relatives. Schizophrenia Research, 63(3), 261–271. https://doi.org/10.1016/s0920-9964(02)00324-9

    Article  CAS  PubMed  Google Scholar 

  • Versiani, M., Nardi, A. E., Mundim, F. D., Alves, A. B., Liebowitz, M. R., & Amrein, R. (1992). Pharmacotherapy of social phobia. A controlled study with moclobemide and phenelzine. Clinical Trial British Journal of Psychiatry, 161, 353–360. https://doi.org/10.1192/bjp.161.3.353

    Article  CAS  Google Scholar 

  • Vetulani, J., Antkiewicz-Michaluk, L., Nalepa, I., & Sansone, M. (2003). A possible physiological role for cerebral tetrahydroisoquinolines. Neurotoxicity Research, 5(1–2), 147–155. https://doi.org/10.1007/BF03033379

    Article  PubMed  Google Scholar 

  • Wąsik, A., & Antkiewicz-Michaluk, L. (2017). The mechanism of neuroprotective action of natural compounds. Pharmacological Reports, 69(5), 851–860. https://doi.org/10.1016/j.pharep.2017.03.018

    Article  CAS  PubMed  Google Scholar 

  • Wąsik, A., Białoń, M., Żarnowska, M., & Antkiewicz-Michaluk, L. (2019). Comparison of the effects of 1MeTIQ and olanzapine on performance in the elevated plus maze test and monoamine metabolism in the brain after ketamine treatment. Pharmacology, Biochemistry, and Behavior, 181, 17–27. https://doi.org/10.1016/j.pbb.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  • Wąsik, A., Możdżeń, E., Michaluk, J., Romańska, I., & Antkiewicz-Michaluk, L. (2014). 1-Methyl-1,2,3,4-tetrahydroisoquinoline, an endogenous Neuroprotectant and MAO inhibitor with antidepressant-like properties in the rat. Neurotoxicity Research, 25(4), 323–334. https://doi.org/10.1007/s12640-013-9425-0

    Article  CAS  PubMed  Google Scholar 

  • Wąsik, A., Romańska, I., & Antkiewicz-Michaluk, L. (2010). Important role of 3-methoxytyramine in the inhibition of cocaine sensitization by 1-methyl-1,2,3,4-tetrahydroisoquinoline: an in vivo microdialysis study. Pharmacological Reports, 62(6), 983–997. https://doi.org/10.1016/s1734-1140(10)70360-1

    Article  PubMed  Google Scholar 

  • Wierońska, J. M., Zorn, S. H., Doller, D., & Pilc, A. (2016). Metabotropic glutamate receptors as targets for new antipsychotic drugs: Historical perspective and critical comparative assessment. Pharmacology & Therapeutics, 157, 10–27. https://doi.org/10.1016/j.pharmthera.2015.10.007

    Article  CAS  Google Scholar 

  • Wilkinson, L. S., Killcross, S. S., Humby, T., Hall, F. S., Geyer, M. A., & Robbins, T. W. (1994). Social isolation in the rat produces developmentally specific deficits in prepulse inhibition of the acoustic startle response without disrupting latent inhibition. Neuropsychopharmacology, 10(1), 61–72. https://doi.org/10.1038/npp.1994.8

    Article  CAS  PubMed  Google Scholar 

  • Williams, L. N. M. (2016). Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: A theoretical review of the evidence and future directions for clinical translation. Depression and Anxiety, 34, 9–24. https://doi.org/10.1002/da.22556

    Article  PubMed  PubMed Central  Google Scholar 

  • Woźniak, M., Cieślik, P., Marciniak, M., Lenda, T., Pilc, A., & Wierońska, J. M. (2018). Neurochemical changes underlying schizophrenia-related behavior in a modified forced swim test in mice. Pharmacology, Biochemistry, and Behavior, 172, 50–58. https://doi.org/10.1016/j.pbb.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  • Wright, D. J., Renoir, T., Smith, Z. M., Frazier, A. E., Francis, P. S., Thorburn, D. R., McGee, S. L., Hannan, A. J., & Gray, L. J. (2015). N-Acetylcysteine improves mitochondrial function and ameliorates behavioral deficits in the R6/1 mouse model of Huntington’s disease. Translational Psychiatry, 5(1), e492–e492.

    Article  CAS  Google Scholar 

  • Yamakawa, T., Kotake, Y., Fujitani, M., Shintani, H., Makino, Y., & Ohta, S. (1999). Regional distribution of parkinsonism-preventing endogenous tetrahydroisoquinoline derivatives and an endogenous parkinsonism-preventing substance-synthesizing enzyme in monkey brain. Neuroscience Letters, 276(1), 68–70. https://doi.org/10.1016/s0304-3940(99)00786-7

    Article  CAS  PubMed  Google Scholar 

  • Ztaou, S., & Amalric, M. (2019). Contribution of cholinergic interneurons to striatal pathophysiology in Parkinson’s disease. Neurochemistry International, 126, 1–10. https://doi.org/10.1016/j.neuint.2019.02.019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was financially supported through a grant from the National Science Centre Grant No. 2017/25/B/NZ7/01096 and statutory funds from the Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Wąsik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wąsik, A. (2021). Psychiatric Disorders in Animal Models of Schizophrenia. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_241-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_241-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics