Skip to main content

Mechanisms of Dopamine Oxidation and Parkinson’s Disease

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Dopamine’s ability to oxidize to aminochrome explains why this molecule may be a neurotoxic compound that induces toxicity in both cell lines and animal models. Spontaneous dopamine oxidation is prevented by vesicular monoaminergic transporter-2 (VMAT-2) that takes up dopamine into the monoaminergic synaptic vesicles where the low pH prevents dopamine oxidation. Dopamine in the cytosol can also be degraded by monoamine oxidase (MAO) and catechol ortho-methyl transferase (COMT) soluble isoform. However, under certain unknown conditions dopamine oxidize to aminochrome, the precursor of neuromelanin, pigment found in the human substantia nigra. Aminochrome participates in two neurotoxic reactions: (i) the one-electron reduction of aminochrome, which is catalyzed by flavoenzymes that use NADH or NADPH as electron donors. This reaction produces leukoaminochrome-o-semiquinone radical, which is extremely reactive with oxygen that autoxidizes depleting both NADH and O2 required for ATP synthesis; and (ii) aminochrome forms adducts with proteins such as alpha synuclein. In addition, aminochrome inactivates mitochondrial complex I of electron transport chain, vacuolar H-type ATPase, actin, and α- and β-tubulin disrupting the cytoskeleton network. Aminochrome is also able to participate in three neuroprotective reactions: (i) polymerization to neuromelanin; (ii) aminochrome two-electron reduction to leukoaminochrome catalyzed by DT-diaphorase; and (iii) glutathione conjugation of aminochrome catalyzed by glutathione S-transferase M2-2. Aminochrome’s role in the degeneration of dopaminergic neurons in Parkinson’s disease is discussed. Aminochrome may induce the focal neurodegeneration of dopaminergic neurons through mechanisms involving cytoskeleton dysfunction, mitochondrial dysfunction, protein aggregation, oxidative stress, neuroinflammation, endoplasmic reticulum stress, and protein degradation dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AADC:

Aromatic amino acid decarboxylase

COMT:

Catechol ortho-methyltransferase

GST M2-2:

Glutathione S-transferase M2-2

L-dopa:

l-dihydroxyphenylanaline

MAO:

Monoamine oxidases

TH:

Tyrosine hydroxylase

VMAT-2:

Vesicular monoaminergic transporter-2

References

  • Abbas, N., Lücking, C. B., Ricard, S., Dürr, A., Bonifati, V., De Michele, G., Bouley, S., Vaughan, J. R., Gasser, T., Marconi, R., Broussolle, E., Brefel-Courbon, C., Harhangi, B. S., Oostra, B. A., Fabrizio, E., Böhme, G. A., Pradier, L., Wood, N. W., Filla, A., … Brice, A. (1999). A wide variety of mutations in the Parkin gene are responsible for autosomal recessive parkinsonism in Europe. French Parkinson’s Disease Genetics Study Group and the European Consortium on Genetic Susceptibility in Parkinson’s Disease. Human Molecular Genetics, 8(4), 567–574. https://doi.org/10.1093/hmg/8.4.567

    Article  CAS  PubMed  Google Scholar 

  • Aguirre, P., Urrutia, P., Tapia, V., Villa, M., Paris, I., Segura-Aguilar, J., & Núñez, M. T. (2012). The dopamine metabolite aminochrome inhibits mitochondrial complex I and modifies the expression of iron transporters DMT1 and FPN1. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 25(4), 795–803. https://doi.org/10.1007/s10534-012-9525-y

    Article  CAS  Google Scholar 

  • Akhtar, M. J., Yar, M. S., Grover, G., & Nath, R. (2020). Neurological and psychiatric management using COMT inhibitors: A review. Bioorganic Chemistry, 94, 103418.

    Article  CAS  PubMed  Google Scholar 

  • Anoz-Carbonell, E., Timson, D. J., Pey, A. L., & Medina, M. (2020). The catalytic cycle of the antioxidant and cancer-associated human NQO1 enzyme: Hydride transfer, conformational dynamics and functional cooperativity. Antioxidants (Basel, Switzerland), 9(9), 772.

    CAS  Google Scholar 

  • Arriagada, C., Paris, I., Sanchez de las Matas, M. J., Martinez-Alvarado, P., Cardenas, S., Castañeda, P., Graumann, R., Perez-Pastene, C., Olea-Azar, C., Couve, E., Herrero, M. T., Caviedes, P., & Segura-Aguilar, J. (2004). On the neurotoxicity mechanism of leukoaminochrome o-semiquinone radical derived from dopamine oxidation: Mitochondria damage, necrosis, and hydroxyl radical formation. Neurobiology of Disease, 16(2), 468–477. https://doi.org/10.1016/j.nbd.2004.03.014

    Article  CAS  PubMed  Google Scholar 

  • Azadmarzabadi, E., Haghighatfard, A., & Mohammadi, A. (2018). Low resilience to stress is associated with candidate gene expression alterations in the dopaminergic signalling pathway. Psychogeriatrics: The Official Journal of the Japanese Psychogeriatric Society, 18(3), 190–201.

    Article  Google Scholar 

  • Azhar, A. S., Zaher, Z. F., Ashour, O. M., & Abdel-Naim, A. B. (2020). 2-Methoxyestradiol ameliorates metabolic syndrome-induced hypertension and catechol-O-methyltransferase inhibited expression and activity in rats. European Journal of Pharmacology, 882, 173278.

    Article  CAS  PubMed  Google Scholar 

  • Baba, M., Nakajo, S., Tu, P. H., Tomita, T., Nakaya, K., Lee, V. M., Trojanowski, J. Q., & Iwatsubo, T. (1998). Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. The American Journal of Pathology, 152(4), 879–884.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bach, A. W., Lan, N. C., Johnson, D. L., Abell, C. W., Bembenek, M. E., Kwan, S. W., Seeburg, P. H., & Shih, J. C. (1988). cDNA cloning of human liver monoamine oxidase A and B: Molecular basis of differences in enzymatic properties. Proceedings of the National Academy of Sciences of the United States of America, 85(13), 4934–4938. https://doi.org/10.1073/pnas.85.13.4934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baez, S., Linderson, Y., & Segura-Aguilar, J. (1995). Superoxide dismutase and catalase enhance autoxidation during one-electron reduction of aminochrome by NADPH-cytochrome P-450 reductase. Biochemical and Molecular Medicine, 54(1), 12–18. https://doi.org/10.1006/bmme.1995.1002

    Article  CAS  PubMed  Google Scholar 

  • Baez, S., Segura-Aguilar, J., Widersten, M., Johansson, A. S., & Mannervik, B. (1997). Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. The Biochemical Journal, 324(Pt 1), 25–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandres-Ciga, S., Diez-Fairen, M., Kim, J. J., & Singleton, A. B. (2020). Genetics of Parkinson’s disease: An introspection of its journey towards precision medicine. Neurobiology of Disease, 137, 104782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkus, C., Korn, C., Stumpenhorst, K., Laatikainen, L. M., Ballard, D., Lee, S., Sharp, T., Harrison, P. J., Bannerman, D. M., Weinberger, D. R., Chen, J., & Tunbridge, E. M. (2016). Genotype-dependent effects of COMT inhibition on cognitive function in a highly specific, novel mouse model of altered COMT activity. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 41(13), 3060–3069.

    Article  CAS  Google Scholar 

  • Binde, C. D., Tvete, I. F., Gåsemyr, J., Natvig, B., & Klemp, M. (2018). A multiple treatment comparison meta-analysis of monoamine oxidase type B inhibitors for Parkinson’s disease. British Journal of Clinical Pharmacology, 84(9), 1917–1927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisaglia, M., Mammi, S., & Bubacco, L. (2007). Kinetic and structural analysis of the early oxidation products of dopamine: Analysis of the interactions with alpha-synuclein. The Journal of Biological Chemistry, 282(21), 15597–15605.

    Article  CAS  PubMed  Google Scholar 

  • Börzsei, D., Priksz, D., Szabó, R., Bombicz, M., Karácsonyi, Z., Puskás, L. G., Fehér, L. Z., Radák, Z., Kupai, K., Berkó, A. M., Varga, C., Juhász, B., & Pósa, A. (2021). Exercise-mitigated sex-based differences in aging: From genetic alterations to heart performance. American Journal of Physiology Heart and Circulatory Physiology, 320(2), H854–H866.

    Article  PubMed  CAS  Google Scholar 

  • Braak, H., Ghebremedhin, E., Rüb, U., Bratzke, H., & Del Tredici, K. (2004). Stages in the development of Parkinson’s disease-related pathology. Cell and Tissue Research, 318(1), 121–134. https://doi.org/10.1007/s00441-004-0956-9

    Article  PubMed  Google Scholar 

  • Briceño, A., Muñoz, P., Brito, P., Huenchuguala, S., Segura-Aguilar, J., & Paris, I. B. (2016). Aminochrome toxicity is mediated by inhibition of microtubules polymerization through the formation of adducts with tubulin. Neurotoxicity Research, 29(3), 381–393. https://doi.org/10.1007/s12640-015-9560-x

    Article  CAS  PubMed  Google Scholar 

  • Briggs, G. D., Nagy, G. M., & Dickson, P. W. (2013). Mechanism of action of salsolinol on tyrosine hydroxylase. Neurochemistry International, 63(8), 726–731.

    Article  CAS  PubMed  Google Scholar 

  • Calo, L., Wegrzynowicz, M., Santivañez-Perez, J., & Grazia Spillantini, M. (2016). Synaptic failure and α-synuclein. Movement Disorders: Official Journal of the Movement Disorder Society, 31(2), 169–177.

    Article  CAS  Google Scholar 

  • Cardenas, S. P., Perez-Pastene, C., Couve, E., & Segura-Aguilar, J. (2008). The DT-diaphorase prevents the aggregation of a-synuclein induced by aminochrome. Neurotoxicity Research, 13, 136.

    Google Scholar 

  • Carstam, R., Brinck, C., Hindemith-Augustsson, A., Rorsman, H., & Rosengren, E. (1991). The neuromelanin of the human substantia nigra. Biochimica et Biophysica Acta, 1097(2), 152–160.

    Article  CAS  PubMed  Google Scholar 

  • Cartier, E. A., Parra, L. A., Baust, T. B., Quiroz, M., Salazar, G., Faundez, V., Egaña, L., & Torres, G. E. (2010). A biochemical and functional protein complex involving dopamine synthesis and transport into synaptic vesicles. The Journal of Biological Chemistry, 285(3), 1957–1966. https://doi.org/10.1074/jbc.M109.054510

    Article  CAS  PubMed  Google Scholar 

  • Cersosimo, M. G., Raina, G. B., Pecci, C., Pellene, A., Calandra, C. R., Gutiérrez, C., Micheli, F. E., & Benarroch, E. E. (2013). Gastrointestinal manifestations in Parkinson’s disease: Prevalence and occurrence before motor symptoms. Journal of Neurology, 260(5), 1332–1338.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry, F. A., Edwards, R. H., & Fonnum, F. (2008). Vesicular neurotransmitter transporters as targets for endogenous and exogenous toxic substances. Annual Review of Pharmacology and Toxicology, 48, 277–301.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Song, J., Yuan, P., Tian, Q., Ji, Y., Ren-Patterson, R., Liu, G., Sei, Y., & Weinberger, D. R. (2011). Orientation and cellular distribution of membrane-bound catechol-O-methyltransferase in cortical neurons: Implications for drug development. The Journal of Biological Chemistry, 286(40), 34752–34760. https://doi.org/10.1074/jbc.M111.262790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, F. C., Kuo, J. S., Chia, L. G., & Dryhurst, G. (1996). Elevated 5-S-cysteinyldopamine/homovanillic acid ratio and reduced homovanillic acid in cerebrospinal fluid: Possible markers for and potential insights into the pathoetiology of Parkinson’s disease. Journal of Neural Transmission (Vienna, Austria: 1996), 103(4), 433–446.

    Article  CAS  Google Scholar 

  • Conway, K. A., Rochet, J. C., Bieganski, R. M., & Lansbury, P. T., Jr. (2001). Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science (New York, N.Y.), 294(5545), 1346–1349. https://doi.org/10.1126/science.1063522

    Article  CAS  Google Scholar 

  • Cuervo, A. M., Wong, E. S., & Martinez-Vicente, M. (2010). Protein degradation, aggregation, and misfolding. Movement Disorders: Official Journal of the Movement Disorder Society, 25(Suppl 1), S49–S54. https://doi.org/10.1002/mds.22718

    Article  Google Scholar 

  • Cuevas, C., Huenchuguala, S., Muñoz, P., Villa, M., Paris, I., Mannervik, B., & Segura-Aguilar, J. (2015). Glutathione transferase-M2-2 secreted from glioblastoma cell protects SH-SY5Y cells from aminochrome neurotoxicity. Neurotoxicity Research, 27(3), 217–228. https://doi.org/10.1007/s12640-014-9500-1

    Article  CAS  PubMed  Google Scholar 

  • Dagnino-Subiabre, A., Cassels, B. K., Baez, S., Johansson, A. S., Mannervik, B., & Segura-Aguilar, J. (2000). Glutathione transferase M2-2 catalyzes conjugation of dopamine and dopa o-quinones. Biochemical and Biophysical Research Communications, 274(1), 32–36. https://doi.org/10.1006/bbrc.2000.3087

    Article  CAS  PubMed  Google Scholar 

  • de Araújo, F. M., Ferreira, R. S., Souza, C. S., Dos Santos, C. C., Rodrigues, T., Silva, E., Gasparotto, J., Gelain, D. P., El-Bachá, R. S., Costa, M. F. D., Fonseca, J., Segura-Aguilar, J., Costa, S. L., & Silva, V. (2018). Aminochrome decreases NGF, GDNF and induces neuroinflammation in organotypic midbrain slice cultures. Neurotoxicology, 66, 98–106. https://doi.org/10.1016/j.neuro.2018.03.009

    Article  CAS  PubMed  Google Scholar 

  • Dean, B., Parkin, G. M., & Gibbons, A. S. (2020). Associations between catechol-O-methyltransferase (COMT) genotypes at rs4818 and rs4680 and gene expression in human dorsolateral prefrontal cortex. Experimental Brain Research, 238(2), 477–486.

    Article  CAS  PubMed  Google Scholar 

  • Dhabal, S., Das, P., Biswas, P., Kumari, P., Yakubenko, V. P., Kundu, S., Cathcart, M. K., Kundu, M., Biswas, K., & Bhattacharjee, A. (2018). Regulation of monoamine oxidase A (MAO-A) expression, activity, and function in IL-13-stimulated monocytes and A549 lung carcinoma cells. The Journal of Biological Chemistry, 293(36), 14040–14064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Véliz, G., Paris, I., Mora, S., Raisman-Vozari, R., & Segura-Aguilar, J. (2008). Copper neurotoxicity in rat substantia nigra and striatum is dependent on DT-diaphorase inhibition. Chemical Research in Toxicology, 21(6), 1180–1185. https://doi.org/10.1021/tx8001143

    Article  CAS  PubMed  Google Scholar 

  • Du, X. Y., Xie, X. X., & Liu, R. T. (2020). The role of α-synuclein oligomers in Parkinson’s disease. International Journal of Molecular Sciences, 21(22), 8645.

    Article  CAS  PubMed Central  Google Scholar 

  • Duarte, P., Cuadrado, A., & León, R. (2021). Monoamine oxidase inhibitors: From classic to new clinical approaches. Handbook of Experimental Pharmacology, 264, 229–259. https://doi.org/10.1007/164_2020_384

    Article  CAS  PubMed  Google Scholar 

  • Dunkley, P. R., & Dickson, P. W. (2019). Tyrosine hydroxylase phosphorylation in vivo. Journal of Neurochemistry, 149(6), 706–728.

    Article  CAS  PubMed  Google Scholar 

  • Egaña, L. A., Cuevas, R. A., Baust, T. B., Parra, L. A., Leak, R. K., Hochendoner, S., Peña, K., Quiroz, M., Hong, W. C., Dorostkar, M. M., Janz, R., Sitte, H. H., & Torres, G. E. (2009). Physical and functional interaction between the dopamine transporter and the synaptic vesicle protein synaptogyrin-3. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(14), 4592–4604. https://doi.org/10.1523/JNEUROSCI.4559-08.2009

    Article  CAS  Google Scholar 

  • Fasano, M., Bergamasco, B., & Lopiano, L. (2006). Is neuromelanin changed in Parkinson’s disease? Investigations by magnetic spectroscopies. Journal of Neural Transmission (Vienna, Austria: 1996), 113(6), 769–774. https://doi.org/10.1007/s00702-005-0448-4

    Article  CAS  Google Scholar 

  • Flydal, M. I., Kråkenes, T. A., Tai, M., Tran, M., Teigen, K., & Martinez, A. (2021). Levalbuterol lowers the feedback inhibition by dopamine and delays misfolding and aggregation in tyrosine hydroxylase. Biochimie, 183, 126–132. https://doi.org/10.1016/j.biochi.2020.12.002

    Article  CAS  PubMed  Google Scholar 

  • Foppoli, C., Coccia, R., Cini, C., & Rosei, M. A. (1997). Catecholamines oxidation by xanthine oxidase. Biochimica et Biophysica Acta, 1334(2–3), 200–206. https://doi.org/10.1016/s0304-4165(96)00093-1

    Article  CAS  PubMed  Google Scholar 

  • Fornes, R., Manti, M., Qi, X., Vorontsov, E., Sihlbom, C., Nyström, J., Jerlhag, E., Maliqueo, M., Hirschberg, A. L., Carlström, M., Benrick, A., & Stener-Victorin, E. (2019). Mice exposed to maternal androgen excess and diet-induced obesity have altered phosphorylation of catechol-O-methyltransferase in the placenta and fetal liver. International Journal of Obesity (2005), 43(11), 2176–2188.

    Article  CAS  Google Scholar 

  • Fuentes, P., Paris, I., Nassif, M., Caviedes, P., & Segura-Aguilar, J. (2007). Inhibition of VMAT-2 and DT-diaphorase induce cell death in a substantia nigra-derived cell line–An experimental cell model for dopamine toxicity studies. Chemical Research in Toxicology, 20(5), 776–783. https://doi.org/10.1021/tx600325u

    Article  CAS  PubMed  Google Scholar 

  • Galzigna, L., De Iuliis, A., & Zanatta, L. (2000). Enzymatic dopamine peroxidation in substantia nigra of human brain. Clinica Chimica Acta; International Journal of Clinical Chemistry, 300(1–2), 131–138. https://doi.org/10.1016/s0009-8981(00)00313-2

    Article  CAS  PubMed  Google Scholar 

  • Ge, P., Dawson, V. L., & Dawson, T. M. (2020). PINK1 and Parkin mitochondrial quality control: A source of regional vulnerability in Parkinson’s disease. Molecular Neurodegeneration, 15(1), 20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerlach, M., Double, K. L., Ben-Shachar, D., Zecca, L., Youdim, M. B., & Riederer, P. (2003). Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson’s disease. Neurotoxicity Research, 5, 35–44.

    Article  PubMed  Google Scholar 

  • Goldman, J. G., & Postuma, R. (2014). Premotor and nonmotor features of Parkinson’s disease. Current Opinion in Neurology, 27(4), 434–441.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldstein, D. S., Holmes, C., Sullivan, P., Jinsmaa, Y., Kopin, I. J., & Sharabi, Y. (2016). Elevated cerebrospinal fluid ratios of cysteinyl-dopamine/3,4-dihydroxyphenylacetic acid in parkinsonian synucleinopathies. Parkinsonism & Related Disorders, 31, 79–86.

    Article  Google Scholar 

  • Graham, D. G., Tiffany, S. M., Bell, W. R., Jr., & Gutknecht, W. F. (1978). Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Molecular Pharmacology, 14(4), 644–653.

    CAS  PubMed  Google Scholar 

  • Gu, H., Lazarenko, R. M., Koktysh, D., Iacovitti, L., & Zhang, Q. (2015). A stem cell-derived platform for studying single synaptic vesicles in dopaminergic synapses. Stem Cells Translational Medicine, 4(8), 887–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillot, T. S., & Miller, G. W. (2009). Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. Molecular Neurobiology, 39(2), 149–170. https://doi.org/10.1007/s12035-009-8059-y

    Article  CAS  PubMed  Google Scholar 

  • Gvirts Probolovski, H. Z., & Dahan, A. (2021). The potential role of dopamine in mediating motor function and interpersonal synchrony. Biomedicine, 9(4), 382.

    Google Scholar 

  • Hartung, J. E., Eskew, O., Wong, T., Tchivileva, I. E., Oladosu, F. A., O’Buckley, S. C., & Nackley, A. G. (2015). Nuclear factor-kappa B regulates pain and COMT expression in a rodent model of inflammation. Brain, Behavior, and Immunity, 50, 196–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hastings, T. G. (1995). Enzymatic oxidation of dopamine: The role of prostaglandin H synthase. Journal of Neurochemistry, 64(2), 919–924. https://doi.org/10.1046/j.1471-4159.1995.64020919.x

    Article  CAS  PubMed  Google Scholar 

  • Hattori, N., Matsumine, H., Asakawa, S., Kitada, T., Yoshino, H., Elibol, B., Brookes, A. J., Yamamura, Y., Kobayashi, T., Wang, M., Yoritaka, A., Minoshima, S., Shimizu, N., & Mizuno, Y. (1998). Point mutations (Thr240Arg and Gln311Stop) [correction of Thr240Arg and Ala311Stop] in the Parkin gene. Biochemical and Biophysical Research Communications, 249, 754–758.

    Article  CAS  PubMed  Google Scholar 

  • Hauser, D. N., Dukes, A. A., Mortimer, A. D., & Hastings, T. G. (2013). Dopamine quinone modifies and decreases the abundance of the mitochondrial selenoprotein glutathione peroxidase 4. Free Radical Biology & Medicine, 65, 419–427.

    Article  CAS  Google Scholar 

  • Hawkes, C. H., Del Tredici, K., & Braak, H. (2010). A timeline for Parkinson’s disease. Parkinsonism & Related Disorders, 16(2), 79–84. https://doi.org/10.1016/j.parkreldis.2009.08.007

    Article  Google Scholar 

  • Hedges, D. M., Yorgason, J. T., Perez, A. W., Schilaty, N. D., Williams, B. M., Watt, R. K., & Steffensen, S. C. (2020). Spontaneous formation of melanin from dopamine in the presence of iron. Antioxidants (Basel, Switzerland), 9(12), 1285. https://doi.org/10.3390/antiox9121285

    Article  CAS  Google Scholar 

  • Herrera, A., Muñoz, P., Paris, I., Díaz-Veliz, G., Mora, S., Inzunza, J., Hultenby, K., Cardenas, C., Jaña, F., Raisman-Vozari, R., Gysling, K., Abarca, J., Steinbusch, H. W., & Segura-Aguilar, J. (2016). Aminochrome induces dopaminergic neuronal dysfunction: A new animal model for Parkinson’s disease. Cellular and Molecular Life Sciences: CMLS, 73(18), 3583–3597. https://doi.org/10.1007/s00018-016-2182-5

    Article  CAS  PubMed  Google Scholar 

  • Herrera, A., Muñoz, P., Steinbusch, H., & Segura-Aguilar, J. (2017). Are dopamine oxidation metabolites involved in the loss of dopaminergic neurons in the nigrostriatal system in Parkinson’s disease? ACS Chemical Neuroscience, 8(4), 702–711. https://doi.org/10.1021/acschemneuro.7b00034

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Soto, A., Díaz-Veliz, G., Mora, S., Muñoz, P., Henny, P., Steinbusch, H., & Segura-Aguilar, J. (2017). On the role of DT-diaphorase inhibition in aminochrome-induced neurotoxicity in vivo. Neurotoxicity Research, 32(1), 134–140. https://doi.org/10.1007/s12640-017-9719-8

    Article  CAS  PubMed  Google Scholar 

  • Hong, L., & Simon, J. D. (2007). Current understanding of the binding sites, capacity, affinity, and biological significance of metals in melanin. The Journal of Physical Chemistry B, 111(28), 7938–7947. https://doi.org/10.1021/jp071439h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, R., & Li, X. (2018). Discovery of monoamine oxidase inhibitors by medicinal chemistry approaches. MedChemComm, 10(1), 10–25.

    Article  PubMed  Google Scholar 

  • Huenchuguala, S., Muñoz, P., Graumann, R., Paris, I., & Segura-Aguilar, J. (2016). DT-diaphorase protects astrocytes from aminochrome-induced toxicity. Neurotoxicology, 55, 10–12. https://doi.org/10.1016/j.neuro.2016.04.014

    Article  CAS  PubMed  Google Scholar 

  • Huenchuguala, S., Muñoz, P., & Segura-Aguilar, J. (2017). The importance of mitophagy in maintaining mitochondrial function in U373MG cells. Bafilomycin A1 restores aminochrome-induced mitochondrial damage. ACS Chemical Neuroscience, 8(10), 2247–2253. https://doi.org/10.1021/acschemneuro.7b00152

    Article  CAS  PubMed  Google Scholar 

  • Huenchuguala, S., Muñoz, P., Zavala, P., Villa, M., Cuevas, C., Ahumada, U., Graumann, R., Nore, B. F., Couve, E., Mannervik, B., Paris, I., & Segura-Aguilar, J. (2014). Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy, 10(4), 618–630. https://doi.org/10.4161/auto.27720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huenchuguala, S., Sjödin, B., Mannervik, B., & Segura-Aguilar, J. (2019). Novel alpha-synuclein oligomers formed with the aminochrome-glutathione conjugate are not neurotoxic. Neurotoxicity Research, 35(2), 432–440. https://doi.org/10.1007/s12640-018-9969-0

    Article  CAS  PubMed  Google Scholar 

  • Ito, S., Kato, T., Maruta, K., Fujita, K., & Kurahashi, T. (1984). Determination of DOPA, dopamine, and 5-S-cysteinyl-DOPA in plasma, urine, and tissue samples by high-performance liquid chromatography with electrochemical detection. Journal of Chromatography, 311(1), 154–159. https://doi.org/10.1016/s0378-4347(00)84702-7

    Article  CAS  PubMed  Google Scholar 

  • Jimenez, M., Garcia-Carmona, F., Garcia-Canovas, F., Iborra, J. L., Lozano, J. A., & Martinez, F. (1984). Chemical intermediates in dopamine oxidation by tyrosinase, and kinetic studies of the process. Archives of Biochemistry and Biophysics, 235(2), 438–448. https://doi.org/10.1016/0003-9861(84)90217-0

    Article  CAS  PubMed  Google Scholar 

  • Jinsmaa, Y., Isonaka, R., Sharabi, Y., & Goldstein, D. S. (2020). 3,4-Dihydroxyphenylacetaldehyde is more efficient than dopamine in oligomerizing and quinonizing α-synuclein. The Journal of Pharmacology and Experimental Therapeutics, 372(2), 157–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, D. N., & Raghanti, M. A. (2021). The role of monoamine oxidase enzymes in the pathophysiology of neurological disorders. Journal of Chemical Neuroanatomy, 114, 101957.

    Article  CAS  PubMed  Google Scholar 

  • Jorge-Finnigan, A., Kleppe, R., Jung-Kc, K., Ying, M., Marie, M., Rios-Mondragon, I., Salvatore, M. F., Saraste, J., & Martinez, A. (2017). Phosphorylation at serine 31 targets tyrosine hydroxylase to vesicles for transport along microtubules. The Journal of Biological Chemistry, 292(34), 14092–14107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiserova, M., Grambalova, Z., Kurcova, S., Otruba, P., Prikrylova Vranova, H., Mensikova, K., & Kanovsky, P. (2021). Premotor Parkinson’s disease: Overview of clinical symptoms and current diagnostic methods. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia. https://doi.org/10.5507/bp.2021.002. Advance online publication.

  • Kelm-Nelson, C. A., Trevino, M. A., & Ciucci, M. R. (2018). Quantitative analysis of catecholamines in the Pink1 −/− rat model of early-onset Parkinson’s disease. Neuroscience, 379, 126–141.

    Article  CAS  PubMed  Google Scholar 

  • Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y., & Shimizu, N. (1998). Mutations in the Parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392(6676), 605–608. https://doi.org/10.1038/33416

    Article  CAS  PubMed  Google Scholar 

  • Knörle, R. (2018). Neuromelanin in Parkinson’s disease: From Fenton reaction to calcium signaling. Neurotoxicity Research, 33(2), 515–522.

    Article  PubMed  CAS  Google Scholar 

  • Knoth, J., Zallakian, M., & Njus, D. (1981). Stoichiometry of H+-linked dopamine transport in chromaffin granule ghosts. Biochemistry, 20(23), 6625–6629. https://doi.org/10.1021/bi00526a016

    Article  CAS  PubMed  Google Scholar 

  • Kovalenko, I. L., Smagin, D. A., Galyamina, A. G., Orlov, Y. L., & Kudryavtseva, N. N. (2016). Changes in the expression of dopaminergic genes in brain structures of male mice exposed to chronic social defeat stress: An RNA-seq study. Molekuliarnaia Biologiia, 50(1), 184–187.

    CAS  PubMed  Google Scholar 

  • Kuhn, D. M., & Arthur, R., Jr. (1998). Dopamine inactivates tryptophan hydroxylase and forms a redox-cycling quinoprotein: Possible endogenous toxin to serotonin neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18(18), 7111–7117. https://doi.org/10.1523/JNEUROSCI.18-18-07111.1998

    Article  CAS  Google Scholar 

  • Larhammar, M., Patra, K., Blunder, M., Emilsson, L., Peuckert, C., Arvidsson, E., Rönnlund, D., Preobraschenski, J., Birgner, C., Limbach, C., Widengren, J., Blom, H., Jahn, R., Wallén-Mackenzie, Å., & Kullander, K. (2015). SLC10A4 is a vesicular amine-associated transporter modulating dopamine homeostasis. Biological Psychiatry, 77(6), 526–536.

    Article  CAS  PubMed  Google Scholar 

  • LaVoie, M. J., Ostaszewski, B. L., Weihofen, A., Schlossmacher, M. G., & Selkoe, D. J. (2005). Dopamine covalently modifies and functionally inactivates Parkin. Nature Medicine, 11(11), 1214–1221. https://doi.org/10.1038/nm1314

    Article  CAS  PubMed  Google Scholar 

  • Levitt, M., Spector, S., Sjoerdsma, A., & Udenfriend, S. (1965). Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused Guinea-pig heart. The Journal of Pharmacology and Experimental Therapeutics, 148, 1–8.

    CAS  PubMed  Google Scholar 

  • Li, L., Zhang, C. W., Chen, G. Y., Zhu, B., Chai, C., Xu, Q. H., Tan, E. K., Zhu, Q., Lim, K. L., & Yao, S. Q. (2014). A sensitive two-photon probe to selectively detect monoamine oxidase B activity in Parkinson’s disease models. Nature Communications, 5, 3276.

    Article  PubMed  CAS  Google Scholar 

  • Li, L. S., Liu, C. Z., Xu, J. D., Zheng, L. F., Feng, X. Y., Zhang, Y., & Zhu, J. X. (2015). Effect of entacapone on colon motility and ion transport in a rat model of Parkinson’s disease. World Journal of Gastroenterology, 21(12), 3509–3518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lighezan, R., Sturza, A., Duicu, O. M., Ceausu, R. A., Vaduva, A., Gaspar, M., Feier, H., Vaida, M., Ivan, V., Lighezan, D., Muntean, D. M., & Mornos, C. (2016). Monoamine oxidase inhibition improves vascular function in mammary arteries from nondiabetic and diabetic patients with coronary heart disease. Canadian Journal of Physiology and Pharmacology, 94(10), 1040–1047.

    Article  CAS  PubMed  Google Scholar 

  • Linert, W., Herlinger, E., Jameson, R. F., Kienzl, E., Jellinger, K., & Youdim, M. B. (1996). Dopamine, 6-hydroxydopamine, iron, and dioxygen–their mutual interactions and possible implication in the development of Parkinson’s disease. Biochimica et Biophysica Acta, 1316(3), 160–168. https://doi.org/10.1016/0925-4439(96)00020-8

    Article  PubMed  Google Scholar 

  • Linsenbardt, A. J., Breckenridge, J. M., Wilken, G. H., & Macarthur, H. (2012). Dopaminochrome induces caspase-independent apoptosis in the mesencephalic cell line, MN9D. Journal of Neurochemistry, 122(1), 175–184. https://doi.org/10.1111/j.1471-4159.2012.07756.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linsenbardt, A. J., Wilken, G. H., Westfall, T. C., & Macarthur, H. (2009). Cytotoxicity of dopaminochrome in the mesencephalic cell line, MN9D, is dependent upon oxidative stress. Neurotoxicology, 30(6), 1030–1035. https://doi.org/10.1016/j.neuro.2009.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano, J., Muñoz, P., Nore, B. F., Ledoux, S., & Segura-Aguilar, J. (2010). Stable expression of short interfering RNA for DT-diaphorase induces neurotoxicity. Chemical Research in Toxicology, 23, 1492–1496.

    Article  CAS  PubMed  Google Scholar 

  • Lu, J., Wu, M., & Yue, Z. (2020). Autophagy and Parkinson’s disease. Advances in Experimental Medicine and Biology, 1207, 21–51.

    Article  CAS  PubMed  Google Scholar 

  • Lu, L., Jia, H., Gao, G., Duan, C., Ren, J., Li, Y., & Yang, H. (2018). Pink1 regulates tyrosine hydroxylase expression and dopamine synthesis. Journal of Alzheimer’s Disease: JAD, 63(4), 1361–1371.

    Article  CAS  PubMed  Google Scholar 

  • Magee, C. P., German, C. L., Siripathane, Y. H., Curtis, P. S., Anderson, D. J., Wilkins, D. G., Hanson, G. R., & Fleckenstein, A. E. (2020). 3,4-Methylenedioxypyrovalerone: Neuropharmacological impact of a designer stimulant of abuse on monoamine transporters. The Journal of Pharmacology and Experimental Therapeutics, 374(2), 273–282. https://doi.org/10.1124/jpet.119.264895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallajosyula, J. K., Kaur, D., Chinta, S. J., Rajagopalan, S., Rane, A., Nicholls, D. G., Di Monte, D. A., Macarthur, H., & Andersen, J. K. (2008). MAO-B elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS One, 3(2), e1616.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marin, C., & Obeso, J. A. (2010). Catechol-O-methyltransferase inhibitors in preclinical models as adjuncts of L-dopa treatment. International Review of Neurobiology, 95, 191–205. https://doi.org/10.1016/B978-0-12-381326-8.00008-9

    Article  CAS  PubMed  Google Scholar 

  • Matos, M. J., Herrera Ibatá, D. M., Uriarte, E., & Viña, D. (2020). Coumarin-rasagiline hybrids as potent and selective hMAO-B inhibitors, antioxidants, and neuroprotective agents. ChemMedChem, 15(6), 532–538.

    Article  CAS  PubMed  Google Scholar 

  • McNaught, K. S., Perl, D. P., Brownell, A. L., & Olanow, C. W. (2004). Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Annals of Neurology, 56(1), 149–162. https://doi.org/10.1002/ana.20186

    Article  CAS  PubMed  Google Scholar 

  • Meléndez, C., Muñoz, P., & Segura-Aguilar, J. (2019). DT-Diaphorase prevents aminochrome-induced lysosome dysfunction in SH-SY5Y cells. Neurotoxicity Research, 35(1), 255–259. https://doi.org/10.1007/s12640-018-9953-8

    Article  CAS  PubMed  Google Scholar 

  • Miguelez, C., De Deurwaerdère, P., & Sgambato, V. (2020). Editorial: Non-dopaminergic systems in Parkinson’s disease. Frontiers in Pharmacology, 11, 593822.

    Article  PubMed  PubMed Central  Google Scholar 

  • Milković, L., Tomljanović, M., Čipak Gašparović, A., Novak Kujundžić, R., Šimunić, D., Konjevoda, P., Mojzeš, A., Đaković, N., Žarković, N., & Gall Trošelj, K. (2019). Nutritional stress in head and neck cancer originating cell lines: The sensitivity of the NRF2-NQO1 axis. Cell, 8(9), 1001.

    Article  CAS  Google Scholar 

  • Mohite, G. M., Navalkar, A., Kumar, R., Mehra, S., Das, S., Gadhe, L. G., Ghosh, D., Alias, B., Chandrawanshi, V., Ramakrishnan, A., Mehra, S., & Maji, S. K. (2018). The familial α-synuclein A53E mutation enhances cell death in response to environmental toxins due to a larger population of oligomers. Biochemistry, 57(33), 5014–5028.

    Article  CAS  PubMed  Google Scholar 

  • Monastyrska, I., Rieter, E., Klionsky, D. J., & Reggiori, F. (2009). Multiple roles of the cytoskeleton in autophagy. Biological Reviews of the Cambridge Philosophical Society, 84(3), 431–448. https://doi.org/10.1111/j.1469-185X.2009.00082.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Muñoz, P., Cardenas, S., Huenchuguala, S., Briceño, A., Couve, E., Paris, I., & Segura-Aguilar, J. (2015). DT-diaphorase prevents aminochrome-induced alpha-synuclein oligomer formation and neurotoxicity. Toxicological Sciences: An Official Journal of the Society of Toxicology, 145(1), 37–47. https://doi.org/10.1093/toxsci/kfv016

    Article  CAS  Google Scholar 

  • Muñoz, P., Huenchuguala, S., Paris, I., & Segura-Aguilar, J. (2012). Dopamine oxidation and autophagy. Parkinson’s Disease, 2012, 920953. https://doi.org/10.1155/2012/920953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz, P., Paris, I., Sanders, L. H., Greenamyre, J. T., & Segura-Aguilar, J. (2012). Overexpression of VMAT-2 and DT-diaphorase protects substantia nigra-derived cells against aminochrome neurotoxicity. Biochimica et Biophysica Acta, 1822(7), 1125–1136. https://doi.org/10.1016/j.bbadis.2012.03.010

    Article  CAS  PubMed  Google Scholar 

  • Muñoz, P. S., & Segura-Aguilar, J. (2017). DT-diaphorase protects against autophagy induced by aminochrome-dependent alpha-synuclein oligomers. Neurotoxicity Research, 32(3), 362–367. https://doi.org/10.1007/s12640-017-9747-4

    Article  CAS  PubMed  Google Scholar 

  • Murugan, N. A., Muvva, C., Jeyarajpandian, C., Jeyakanthan, J., & Subramanian, V. (2020). Performance of force-field- and machine learning-based scoring functions in ranking MAO-B protein-inhibitor complexes in relevance to developing Parkinson’s therapeutics. International Journal of Molecular Sciences, 21(20), 7648. https://doi.org/10.3390/ijms21207648

    Article  CAS  PubMed Central  Google Scholar 

  • Myöhänen, T. T., Schendzielorz, N., & Männistö, P. T. (2010). Distribution of catechol-O-methyltransferase (COMT) proteins and enzymatic activities in wild-type and soluble COMT deficient mice. Journal of Neurochemistry, 113(6), 1632–1643. https://doi.org/10.1111/j.1471-4159.2010.06723.x

    Article  CAS  PubMed  Google Scholar 

  • Naoi, M., Maruyama, W., Yi, H., Yamaoka, Y., Shamoto-Nagai, M., Akao, Y., Gerlach, M., Tanaka, M., & Riederer, P. (2008). Neuromelanin selectively induces apoptosis in dopaminergic SH-SY5Y cells by deglutathionylation in mitochondria: Involvement of the protein and melanin component. Journal of Neurochemistry, 105, 2489–2500.

    Article  CAS  PubMed  Google Scholar 

  • Naoi, M., Riederer, P., & Maruyama, W. (2016). Modulation of monoamine oxidase (MAO) expression in neuropsychiatric disorders: Genetic and environmental factors involved in type A MAO expression. Journal of Neural Transmission (Vienna, Austria: 1996), 123(2), 91–106.

    Article  CAS  Google Scholar 

  • Napolitano, A., Manini, P., & d’Ischia, M. (2011). Oxidation chemistry of catecholamines and neuronal degeneration: An update. Current Medicinal Chemistry, 18(12), 1832–1845.

    Article  CAS  PubMed  Google Scholar 

  • Ni, P., Liu, M., Wang, D., Tian, Y., Zhao, L., Wei, J., Yu, X., Qi, X., Li, X., Yu, H., Ni, R., Ma, X., Deng, W., Guo, W., Wang, Q., & Li, T. (2021). Association analysis between catechol-O-methyltransferase expression and cognitive function in patients with schizophrenia, bipolar disorder, or major depression. Neuropsychiatric Disease and Treatment, 17, 567–574.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ochs, S. D., Westfall, T. C., & Macarthur, H. (2005). The separation and quantification of aminochromes using high-pressure liquid chromatography with electrochemical detection. Journal of Neuroscience Methods, 142, 201–208.

    Article  CAS  PubMed  Google Scholar 

  • Pajares, M., Rojo, A. I., Manda, G., Boscá, L., & Cuadrado, A. (2020). Inflammation in Parkinson’s disease: Mechanisms and therapeutic implications. Cell, 9(7), 1687.

    Article  CAS  Google Scholar 

  • Palladino, P., Torrini, F., Scarano, S., & Minunni, M. (2020). Colorimetric analysis of the early oxidation of dopamine by hypochlorous acid as preliminary screening tool for chemical determinants of neuronal oxidative stress. Journal of Pharmaceutical and Biomedical Analysis, 179, 113016.

    Article  CAS  PubMed  Google Scholar 

  • Paris, I., Dagnino-Subiabre, A., Marcelain, K., Bennett, L. B., Caviedes, P., Caviedes, R., Azar, C. O., & Segura-Aguilar, J. (2001). Copper neurotoxicity is dependent on dopamine-mediated copper uptake and one-electron reduction of aminochrome in a rat substantia nigra neuronal cell line. Journal of Neurochemistry, 77(2), 519–529. https://doi.org/10.1046/j.1471-4159.2001.00243.x

    Article  CAS  PubMed  Google Scholar 

  • Paris, I., Martinez-Alvarado, P., Cardenas, S., Perez-Pastene, C., Graumann, R., Fuentes, P., Olea-Azar, C., Caviedes, P., & Segura-Aguilar, J. (2005). Dopamine-dependent iron toxicity in cells derived from rat hypothalamus. Chemical Research in Toxicology, 18, 415–419.

    Article  CAS  PubMed  Google Scholar 

  • Paris, I., Martinez-Alvarado, P., Perez-Pastene, C., Vieira, M. N., Olea-Azar, C., Raisman-Vozari, R., Cardenas, S., Graumann, R., Caviedes, P., & Segura-Aguilar, J. (2005). Monoamine transporter inhibitors and norepinephrine reduce dopamine-dependent iron dependent iron toxicity in cells derived from the substantia nigra. Journal of Neurochemistry, 92, 1021–1032.

    Article  CAS  PubMed  Google Scholar 

  • Paris, I., Muñoz, P., Huenchuguala, S., Couve, E., Sanders, L. H., Greenamyre, J. T., Caviedes, P., & Segura-Aguilar, J. (2011). Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line. Toxicological Sciences: An Official Journal of the Society of Toxicology, 121(2), 376–388. https://doi.org/10.1093/toxsci/kfr060

    Article  CAS  Google Scholar 

  • Paris, I., Perez-Pastene, C., Cardenas, S., Iturriaga-Vasquez, P., Muñoz, P., Couve, E., Caviedes, P., & Segura-Aguilar, J. (2010). Aminochrome induces disruption of actin, alpha-, and beta-tubulin cytoskeleton networks in substantia-nigra-derived cell line. Neurotoxicity Research, 18, 82–92.

    Article  PubMed  Google Scholar 

  • Paris, I., Perez-Pastene, C., Couve, E., Caviedes, P., Ledoux, S., & Segura-Aguilar, J. (2009). Copper dopamine complex induces mitochondrial autophagy preceding caspase-independent apoptotic cell death. The Journal of Biological Chemistry, 284, 13306–13315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parra, L. A., Baust, T. B., Smith, A. D., Jaumotte, J. D., Zigmond, M. J., Torres, S., Leak, R. K., Pino, J. A., & Torres, G. E. (2016). The molecular chaperone Hsc70 interacts with tyrosine hydroxylase to regulate enzyme activity and synaptic vesicle localization. The Journal of Biological Chemistry, 291(34), 17510–17522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pey, A. L., Megarity, C. F., & Timson, D. J. (2019). NAD(P)H quinone oxidoreductase (NQO1): An enzyme which needs just enough mobility, in just the right places. Bioscience Reports, 39(1), BSR20180459.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pezzella, A., Crescenzi, O., Natangelo, A., Panzella, L., Napolitano, A., Navaratnam, S., Edge, R., Land, E. J., Barone, V., & d’Ischia, M. (2007). Chemical, pulse radiolysis and density functional studies of a new, labile 5,6-indolequinone and its semiquinone. The Journal of Organic Chemistry, 72(5), 1595–1603. https://doi.org/10.1021/jo0615807

    Article  CAS  PubMed  Google Scholar 

  • Pham, A. N., & Waite, T. D. (2014). Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: Mechanism and kinetics. Journal of Inorganic Biochemistry, 137, 74–84. https://doi.org/10.1016/j.jinorgbio.2014.03.018

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro, S. D., Serrão, M. P., Silva, T., Borges, F., & Soares-da-Silva, P. (2019). Pharmacodynamic evaluation of novel catechol-O-methyltransferase inhibitors. European Journal of Pharmacology, 847, 53–60.

    Article  CAS  PubMed  Google Scholar 

  • Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I., & Nussbaum, R. L. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science (New York, N.Y.), 276(5321), 2045–2047. https://doi.org/10.1126/science.276.5321.2045

    Article  CAS  Google Scholar 

  • Reed, X., Bandrés-Ciga, S., Blauwendraat, C., & Cookson, M. R. (2019). The role of monogenic genes in idiopathic Parkinson’s disease. Neurobiology of Disease, 124, 230–239.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, R. F., Wade-Martins, R., & Alegre-Abarrategui, J. (2015). Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson’s disease brain. Brain: A Journal of Neurology, 138(Pt 6), 1642–1657.

    Article  Google Scholar 

  • Rosengren, E., Linder-Eliasson, E., & Carlsson, A. (1985). Detection of 5-S-cysteinyldopamine in human brain. Journal of Neural Transmission, 63(3–4), 247–253.

    Article  CAS  PubMed  Google Scholar 

  • Ross, D., & Siegel, D. (2017). Functions of NQO1 in cellular protection and CoQ10 metabolism and its potential role as a redox sensitive molecular switch. Frontiers in Physiology, 8, 595.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saitoh, Y., Imabayashi, E., Mukai, T., Matsuda, H., & Takahashi, Y. (2021). Visualization of motor cortex involvement by 18F-THK5351 PET potentially strengthens diagnosis of amyotrophic lateral sclerosis. Clinical Nuclear Medicine, 46(3), 243–245.

    Article  PubMed  Google Scholar 

  • Salomäki, M., Marttila, L., Kivelä, H., Ouvinen, T., & Lukkari, J. (2018). Effects of pH and oxidants on the first steps of polydopamine formation: A thermodynamic approach. The Journal of Physical Chemistry B, 122(24), 6314–6327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santos, C. C., Araújo, F. M., Ferreira, R. S., Silva, V. B., Silva, J., Grangeiro, M. S., Soares, É. N., Pereira, É., Souza, C. S., Costa, S. L., Segura-Aguilar, J., & Silva, V. (2017). Aminochrome induces microglia and astrocyte activation. Toxicology In Vitro: An International Journal Published in Association with BIBRA, 42, 54–60. https://doi.org/10.1016/j.tiv.2017.04.004

    Article  CAS  Google Scholar 

  • Saura, J., Luque, J. M., Cesura, A. M., Da Prada, M., Chan-Palay, V., Huber, G., Löffler, J., & Richards, J. G. (1994). Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience, 62(1), 15–30. https://doi.org/10.1016/0306-4522(94)90311-5

    Article  CAS  PubMed  Google Scholar 

  • Schapira, A. H. (2011). Mitochondrial pathology in Parkinson’s disease. The Mount Sinai Journal of Medicine, New York, 78(6), 872–881. https://doi.org/10.1002/msj.20303

    Article  PubMed  Google Scholar 

  • Schapira, A. H., & Jenner, P. (2011). Etiology and pathogenesis of Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 26(6), 1049–1055. https://doi.org/10.1002/mds.23732

    Article  Google Scholar 

  • Schendzielorz, N., Rysa, A., Reenila, I., Raasmaja, A., & Mannisto, P. T. (2011). Complex estrogenic regulation of catechol-O-methyltransferase (COMT) in rats. Journal of Physiology and Pharmacology: An Official Journal of the Polish Physiological Society, 62(4), 483–490.

    CAS  Google Scholar 

  • Schultzberg, M., Segura-Aguilar, J., & Lind, C. (1988). Distribution of DT diaphorase in the rat brain: Biochemical and immunohistochemical studies. Neuroscience, 27(3), 763–776. https://doi.org/10.1016/0306-4522(88)90181-9

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar, J. (1996). Peroxidase activity of liver microsomal vitamin D 25-hydroxylase and cytochrome P450 1A2 catalyzes 25-hydroxylation of vitamin D3 and oxidation of dopamine to aminochrome. Biochemical and Molecular Medicine, 58(1), 122–129. https://doi.org/10.1006/bmme.1996.0039

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar, J. (2015). A new mechanism for protection of dopaminergic neurons mediated by astrocytes. Neural Regeneration Research, 10(8), 1225–1227. https://doi.org/10.4103/1673-5374.162750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura-Aguilar, J. (2017a). Aminochrome as preclinical model for Parkinson’s disease. Oncotarget, 8(28), 45036–45037. https://doi.org/10.18632/oncotarget.18353

    Article  PubMed  PubMed Central  Google Scholar 

  • Segura-Aguilar, J. (2017b). On the role of endogenous neurotoxins and neuroprotection in Parkinson’s disease. Neural Regeneration Research, 12(6), 897–901. https://doi.org/10.4103/1673-5374.208560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura-Aguilar, J. (2018). Neurotoxins as preclinical models for Parkinson’s disease. Neurotoxicity Research, 34(4), 870–877. https://doi.org/10.1007/s12640-017-9856-0

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar, J. (2019). On the role of aminochrome in mitochondrial dysfunction and endoplasmic reticulum stress in Parkinson’s disease. Frontiers in Neuroscience, 13, 271. https://doi.org/10.3389/fnins.2019.00271

    Article  PubMed  PubMed Central  Google Scholar 

  • Segura-Aguilar, J. (2021). Neuroprotective mechanisms against dopamine oxidation-dependent neurotoxicity. In J. Segura-Aguilar (Ed.), Therapies in Parkinson’s disease-translations from preclinical models (pp. 229–237). Elsevier.

    Google Scholar 

  • Segura-Aguilar, J., Baez, S., Widersten, M., Welch, C. J., & Mannervik, B. (1997). Human class Mu glutathione transferases, in particular isoenzyme M2-2, catalyze detoxication of the dopamine metabolite aminochrome. The Journal of Biological Chemistry, 272(9), 5727–5731.

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar, J., Cardenas, S., Riveros, A., Fuentes-Bravo, P., Lozano, J., Graumann, R., Paris, I., Nassif, M., & Caviedes, P. (2006). DT-diaphorase prevents the formation of alpha-synuclein adducts with aminochrome. Society for Neuroscience Abstracts, 824, 17.

    Google Scholar 

  • Segura-Aguilar, J., & Huenchuguala, S. (2018). Aminochrome induces irreversible mitochondrial dysfunction by inducing autophagy dysfunction in Parkinson’s disease. Frontiers in Neuroscience, 12, 106. https://doi.org/10.3389/fnins.2018.00106

    Article  PubMed  PubMed Central  Google Scholar 

  • Segura-Aguilar, J., & Kostrzewa, R. M. (2015). Neurotoxin mechanisms and processes relevant to Parkinson’s disease: An update. Neurotoxicity Research, 27(3), 328–354. https://doi.org/10.1007/s12640-015-9519-y

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar, J., & Lind, C. (1989). On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine: Prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase. Chemico-Biological Interactions, 72(3), 309–324. https://doi.org/10.1016/0009-2797(89)90006-9

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar, J., Mannervik, B., Inzunza, J., Varshney, M., Nalvarte, I., & Muñoz, P. (2021). Astrocytes protect dopaminergic neurons against aminochrome neurotoxicity. Neural Regeneration Research, 17, 1861.

    Article  Google Scholar 

  • Segura-Aguilar, J., Metodiewa, D., & Welch, C. J. (1998). Metabolic activation of dopamine o-quinones to o-semiquinones by NADPH cytochrome P450 reductase may play an important role in oxidative stress and apoptotic effects. Biochimica et Biophysica Acta, 1381(1), 1–6. https://doi.org/10.1016/s0304-4165(98)00036-1

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar, J., Muñoz, P., & Paris, I. (2016). Aminochrome as new preclinical model to find new pharmacological treatment that stop the development of Parkinson’s disease. Current Medicinal Chemistry, 23(4), 346–359. https://doi.org/10.2174/0929867323666151223094103

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar, J., Paris, I., Muñoz, P., Ferrari, E., Zecca, L., & Zucca, F. A. (2014). Protective and toxic roles of dopamine in Parkinson’s disease. Journal of Neurochemistry, 129(6), 898–915. https://doi.org/10.1111/jnc.12686

    Article  CAS  PubMed  Google Scholar 

  • Shehadeh, J., Double, K. L., Murphy, K. E., Bobrovskaya, L., Reyes, S., Dunkley, P. R., Halliday, G. M., & Dickson, P. W. (2019). Expression of tyrosine hydroxylase isoforms and phosphorylation at serine 40 in the human nigrostriatal system in Parkinson’s disease. Neurobiology of Disease, 130, 104524.

    Article  CAS  PubMed  Google Scholar 

  • Shen, X. M., Xia, B., Wrona, M. Z., & Dryhurst, G. (1996). Synthesis, redox properties, in vivo formation, and neurobehavioral effects of N-acetylcysteinyl conjugates of dopamine: Possible metabolites of relevance to Parkinson’s disease. Chemical Research in Toxicology, 9(7), 1117–1126.

    Article  CAS  PubMed  Google Scholar 

  • Shih, J. C., Grimsby, J., & Chen, K. (1997). Molecular biology of monoamine oxidase A and B: Their role in the degradation of serotonin. In H. G. Baumgarten & M. Gothert (Eds.), Handbook of experimental pharmacology, vol 129, Serotoninergic neurons and 5-HT receptors in the CNS (pp. 655–670). Springer.

    Google Scholar 

  • Siegel, D., Bersie, S., Harris, P., Di Francesco, A., Armstrong, M., Reisdorph, N., Bernier, M., de Cabo, R., Fritz, K., & Ross, D. (2021). A redox-mediated conformational change in NQO1 controls binding to microtubules and α-tubulin acetylation. Redox Biology, 39, 101840.

    Article  CAS  PubMed  Google Scholar 

  • Siegel, D., Dehn, D. D., Bokatzian, S. S., Quinn, K., Backos, D. S., Di Francesco, A., Bernier, M., Reisdorph, N., de Cabo, R., & Ross, D. (2018). Redox modulation of NQO1. PLoS One, 13(1), e0190717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strolin Benedetti, M., Dostert, P., & Tipton, K. F. (1992). Developmental aspects of the monoamine-degrading enzyme monoamine oxidase. Developmental Pharmacology and Therapeutics, 18(3–4), 191–200.

    Article  CAS  PubMed  Google Scholar 

  • Su, Y., DePasquale, M., Liao, G., Buchler, I., Zhang, G., Byers, S., Carr, G. V., Barrow, J., & Wei, H. (2021). Membrane bound catechol-O-methytransferase is the dominant isoform for dopamine metabolism in PC12 cells and rat brain. European Journal of Pharmacology, 896, 173909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szökő, É., Tábi, T., Riederer, P., Vécsei, L., & Magyar, K. (2018). Pharmacological aspects of the neuroprotective effects of irreversible MAO-B inhibitors, selegiline and rasagiline, in Parkinson’s disease. Journal of Neural Transmission (Vienna, Austria: 1996), 125(11), 1735–1749.

    Article  CAS  Google Scholar 

  • Tábi, T., Vécsei, L., Youdim, M. B., Riederer, P., & Szökő, É. (2020). Selegiline: A molecule with innovative potential. Journal of Neural Transmission (Vienna, Austria: 1996), 127(5), 831–842.

    Article  Google Scholar 

  • Taguchi, K., Watanabe, Y., Tsujimura, A., & Tanaka, M. (2019). Expression of α-synuclein is regulated in a neuronal cell type-dependent manner. Anatomical Science International, 94(1), 11–22. https://doi.org/10.1007/s12565-018-0464-8

    Article  CAS  PubMed  Google Scholar 

  • Takahashi-Niki, K., Niki, T., Iguchi-Ariga, S., & Ariga, H. (2017). Transcriptional regulation of DJ-1. Advances in Experimental Medicine and Biology, 1037, 89–95.

    Article  CAS  PubMed  Google Scholar 

  • Tammimäki, A., Aonurm-Helm, A., & Männistö, P. T. (2018). Delayed O-methylation of l-DOPA in MB-COMT-deficient mice after oral administration of l-DOPA and carbidopa. Xenobiotica; the Fate of Foreign Compounds in Biological Systems, 48(4), 325–331.

    Article  PubMed  CAS  Google Scholar 

  • Tammimaki, A., Aonurm-Helm, A., Zhang, F. P., Poutanen, M., Duran-Torres, G., Garcia-Horsman, A., & Mannisto, P. T. (2016). Generation of membrane-bound catechol-O-methyl transferase deficient mice with disctinct sex dependent behavioral phenotype. Journal of Physiology and Pharmacology: An Official Journal of the Polish Physiological Society, 67(6), 827–842.

    CAS  Google Scholar 

  • Tekin, I., Roskoski, R., Jr., Carkaci-Salli, N., & Vrana, K. E. (2014). Complex molecular regulation of tyrosine hydroxylase. Journal of Neural Transmission (Vienna, Austria: 1996), 121(12), 1451–1481. https://doi.org/10.1007/s00702-014-1238-7

    Article  CAS  Google Scholar 

  • Thompson, C. M., Capdevila, J. H., & Strobel, H. W. (2000). Recombinant cytochrome P450 2D18 metabolism of dopamine and arachidonic acid. The Journal of Pharmacology and Experimental Therapeutics, 294(3), 1120–1130.

    CAS  PubMed  Google Scholar 

  • Tolba, M. F., Omar, H. A., Hersi, F., Nunes, A., & Noreddin, A. M. (2019). The impact of catechol-O-methyl transferase knockdown on the cell proliferation of hormone-responsive cancers. Molecular and Cellular Endocrinology, 488, 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Tong, J., Rathitharan, G., Meyer, J. H., Furukawa, Y., Ang, L. C., Boileau, I., Guttman, M., Hornykiewicz, O., & Kish, S. J. (2017). Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders. Brain: A Journal of Neurology, 140(9), 2460–2474.

    Article  Google Scholar 

  • Tse, D. C., McCreery, R. L., & Adams, R. N. (1976). Potential oxidative pathways of brain catecholamines. Journal of Medicinal Chemistry, 19(1), 37–40. https://doi.org/10.1021/jm00223a008

    Article  CAS  PubMed  Google Scholar 

  • Tunbridge, E. M., Narajos, M., Harrison, C. H., Beresford, C., Cipriani, A., & Harrison, P. J. (2019). Which dopamine polymorphisms are functional? Systematic review and meta-analysis of COMT, DAT, DBH, DDC, DRD1-5, MAOA, MAOB, TH, VMAT1, and VMAT2. Biological Psychiatry, 86(8), 608–620.

    Article  CAS  PubMed  Google Scholar 

  • Umek, N., Geršak, B., Vintar, N., Šoštarič, M., & Mavri, J. (2018). Dopamine autoxidation is controlled by acidic pH. Frontiers in Molecular Neuroscience, 11, 467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umemura, H., Kaji, T., Tachibana, K., Morizane, S., & Yamasaki, O. (2019). Serum 5-S-cysteinyl-dopa levels as a predictive marker for the efficacy of nivolumab in advanced malignant melanoma. The International Journal of Biological Markers, 34(4), 414–420.

    Article  CAS  PubMed  Google Scholar 

  • Umemura, H., Yamasaki, O., Kaji, T., Otsuka, M., Asagoe, K., Takata, M., & Iwatsuki, K. (2017). Usefulness of serum 5-S-cysteinyl-dopa as a biomarker for predicting prognosis and detecting relapse in patients with advanced stage malignant melanoma. The Journal of Dermatology, 44(4), 449–454.

    Article  CAS  PubMed  Google Scholar 

  • Valdes, R., Armijo, A., Muñoz, P., Hultenby, K., Hagg, A., Inzunza, J., Nalvarte, I., Varshney, M., Mannervik, B., & Segura-Aguilar, J. (2021). Cellular trafficking of glutathione transferase M2-2 between U373MG and SHSY-S7 cells is mediated by exosomes. Neurotoxicity Research, 39(2), 182–190. https://doi.org/10.1007/s12640-020-00327-5

    Article  CAS  PubMed  Google Scholar 

  • Van Laar, V. S., Mishizen, A. J., Cascio, M., & Hastings, T. G. (2009). Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. Neurobiology of Disease, 34, 487–500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Viceconte, N., Burguillos, M. A., Herrera, A. J., De Pablos, R. M., Joseph, B., & Venero, J. L. (2015). Neuromelanin activates proinflammatory microglia through a caspase-8-dependent mechanism. Journal of Neuroinflammation, 12, 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weinreb, O., Amit, T., Riederer, P., Youdim, M. B., & Mandel, S. A. (2011). Neuroprotective profile of the multitarget drug rasagiline in Parkinson’s disease. International Review of Neurobiology, 100, 127–149. https://doi.org/10.1016/B978-0-12-386467-3.00007-8

    Article  CAS  PubMed  Google Scholar 

  • Westlund, K. N., Denney, R. M., Rose, R. M., & Abell, C. W. (1988). Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience, 25(2), 439–456. https://doi.org/10.1016/0306-4522(88)90250-3

    Article  CAS  PubMed  Google Scholar 

  • Weyler, W., Hsu, Y. P., & Breakefield, X. O. (1990). Biochemistry and genetics of monoamine oxidase. Pharmacology & Therapeutics, 47(3), 391–417. https://doi.org/10.1016/0163-7258(90)90064-9

    Article  CAS  Google Scholar 

  • Whitehead, R. E., Ferrer, J. V., Javitch, J. A., & Justice, J. B. (2001). Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. Journal of Neurochemistry, 76(4), 1242–1251. https://doi.org/10.1046/j.1471-4159.2001.00125.x

    Article  CAS  PubMed  Google Scholar 

  • Williams, A. (1984). MPTP parkinsonism. British Medical Journal (Clinical Research Ed.), 289(6456), 1401–1402. https://doi.org/10.1136/bmj.289.6456.1401

    Article  CAS  Google Scholar 

  • Wolters, E., & Braak, H. (2006). Parkinson’s disease: Premotor clinico-pathological correlations. Journal of Neural Transmission. Supplementum, (70), 309–319. https://doi.org/10.1007/978-3-211-45295-0_47

  • Xia, Y. L., Pang, H. L., Li, S. Y., Liu, Y., Wang, P., & Ge, G. B. (2020). Accurate and sensitive detection of catechol-O-methyltransferase activity by liquid chromatography with fluorescence detection. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1157, 122333.

    Article  CAS  PubMed  Google Scholar 

  • Xing, Y., Sapuan, A., Dineen, R. A., & Auer, D. P. (2018). Life span pigmentation changes of the substantia nigra detected by neuromelanin-sensitive MRI. Movement disorders: Official Journal of the Movement Disorder Society, 33(11), 1792–1799.

    Article  CAS  Google Scholar 

  • Xiong, R., Siegel, D., & Ross, D. (2014). Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity. Toxicology and Applied Pharmacology, 280(2), 285–295. https://doi.org/10.1016/j.taap.2014.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, S., & Chan, P. (2015). Interaction between neuromelanin and alpha-synuclein in Parkinson’s disease. Biomolecules, 5(2), 1122–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, X., Wang, R., Hao, Z., Wang, G., Mu, C., Ding, J., Sun, W., & Ren, H. (2020). DJ-1 regulates tyrosine hydroxylase expression through CaMKKβ/CaMKIV/CREB1 pathway in vitro and in vivo. Journal of Cellular Physiology, 235(2), 869–879.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Stokes, A. H., Roskoski, R., Jr., & Vrana, K. E. (1998). Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. Journal of Neuroscience Research, 54(5), 691–697. https://doi.org/10.1002/(SICI)1097-4547(19981201)54:5<691::AID-JNR14>3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  • Yu, G., Liu, H., Zhou, W., Zhu, X., Yu, C., Wang, N., Zhang, Y., Ma, J., Zhao, Y., Xu, Y., Liao, L., Ji, H., Yuan, C., & Ma, J. (2015). In vivo protein targets for increased quinoprotein adduct formation in aged substantia nigra. Experimental Neurology, 271, 13–24.

    Article  CAS  PubMed  Google Scholar 

  • Zafar, K. S., Siegel, D., & Ross, D. (2006). A potential role for cyclized quinones derived from dopamine, DOPA, and 3,4-dihydroxyphenylacetic acid in proteasomal inhibition. Molecular Pharmacology, 70(3), 1079–1086. https://doi.org/10.1124/mol.106.024703

    Article  CAS  PubMed  Google Scholar 

  • Zecca, L., Fariello, R., Riederer, P., Sulzer, D., Gatti, A., & Tampellini, D. (2002). The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Letters, 510(3), 216–220. https://doi.org/10.1016/s0014-5793(01)03269-0

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Phillips, K., Wielgus, A. R., Liu, J., Albertini, A., Zucca, F. A., Faust, R., Qian, S. Y., Miller, D. S., Chignell, C. F., Wilson, B., Jackson-Lewis, V., Przedborski, S., Joset, D., Loike, J., Hong, J. S., Sulzer, D., & Zecca, L. (2011). Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: Implications for progression of Parkinson’s disease. Neurotoxicity Research, 19(1), 63–72. https://doi.org/10.1007/s12640-009-9140-z

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Zecca, L., Wilson, B., Ren, H. W., Wang, Y. J., Wang, X. M., & Hong, J. S. (2013). Human neuromelanin: An endogenous microglial activator for dopaminergic neuron death. Frontiers in Bioscience (Elite Edition), 5, 1–11.

    Google Scholar 

  • Zhao, C., Wang, Y., Zhang, B., Yue, Y., & Zhang, J. (2020). Genetic variations in catechol-O-methyltransferase gene are associated with levodopa response variability in Chinese patients with Parkinson’s disease. Scientific Reports, 10(1), 9521.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zucca, F. A., Segura-Aguilar, J., Ferrari, E., Muñoz, P., Paris, I., Sulzer, D., Sarna, T., Casella, L., & Zecca, L. (2017). Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Progress in Neurobiology, 155, 96–119. https://doi.org/10.1016/j.pneurobio.2015.09.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by FONDECYT 1100165, 1170033, 1120337 and UST N° O000034304, O000022543.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Segura-Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Segura-Aguilar, J., Paris, I. (2022). Mechanisms of Dopamine Oxidation and Parkinson’s Disease. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics