Skip to main content

\(\sqrt{\epsilon }\) Law: Centennial of the First Exact Result of Classical Radiative Transfer Theory

  • Chapter
  • First Online:
Springer Series in Light Scattering

Part of the book series: Springer Series in Light Scattering ((SSLS))

Abstract

Nowadays probably nobody knows when and where the term “\(\sqrt{\epsilon }\) law” was coined. But as early as in 1975 in the title of one of the papers we find “\(\sqrt{\epsilon }\) revisited” Frisch and Frisch (1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramov YY, Dykhne AM, Napartovich AP (1969) Stationary problems of radiative transfer of excitation. Inst Atomic Energy, Report IAE-1804 (in Russian)

    Google Scholar 

  • Ambartsumian VA (1942) The scattering of light by planetary atmospheres. Astron Zhurn 19:30–41 (reprinted in: Ambartsumian VA (1960) Scientific works, vol I. Armenian Academy of Sciences Publications, Erevan, pp. 206–222 (in Russian), English transl. in: Ambartsumian RV (1998), A life in astrophysics. Selected papers of Viktor A. Ambartsumian. Allerton Press, New York, pp. 67–82)

    Google Scholar 

  • Ambartsumian VA (1948) On the number of scatterings at the diffusion of photons in turbid medium. Dokl Acad Nauk Arm SSR 8:101–104 (reprinted in: Ambartsumian VA (1960) Scientific works, vol I. Armenian Academy of Sciences Publications, Erevan, pp. 282–285 (in Russian))

    Google Scholar 

  • Avrett E, Hummer DG (1965) Non-coherent scattering. II. Line formation with a frequency independent source function. Month Not Roy Astron Soc 130:295–331

    Article  ADS  Google Scholar 

  • Ballester EA, Beluzzi L, Trujillo Bueno J (2017) The transfer of resonance line polarization with partial frequency redistribution in the general Hanle-Zeeman regime. Astrophys J 836:6

    Article  ADS  Google Scholar 

  • Biberman LM (1947) On theory of the diffusion of resonance radiation. Zhurn Eksperim Theor Phys 17:416–426

    MathSciNet  Google Scholar 

  • Bronstein M (1929) Zum Strahlungsgleichgewichtsproblem von Milne. Z Phys 58:696–699; Über das Verhältnis des effektiven Temperatur der Sterne zur Temperatur ihrer Oberfläche. ibid 59:144–148

    Google Scholar 

  • Case KM, Zweifel PF (1967) Linear transport theory. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Castor JI (2004) Radiation hydrodynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Chandrasekhar S (1939) Introduction to the study of stellar structure. University of Chicago Press, Chicago

    MATH  Google Scholar 

  • Chandrasekhar S (1947) On the radiative equilibrium of a stellar atmosphere. XX. Astrophys J 106:145–151

    Article  ADS  MathSciNet  Google Scholar 

  • Chandrasekhar S (1950) Radiative transfer. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Chwolson OD (1889) Grundzüge einer mathematischen Theorie der inneren Diffusion des Lichtes. Bull l’Acad Imp Sci St-Petersb 13:83–113

    Google Scholar 

  • Davison B (1957) Neutron transport theory. Oxford University Press, London

    MATH  Google Scholar 

  • del Pino Alemán T, Manso Sainz R, Trujillo Bueno J (2014) Non coherent continuum scattering as a line polarization mechanism. Astrophys J 784:46

    Article  ADS  Google Scholar 

  • Dementiev AV (2008) Polarization of resonance lines in the case of a Voigt absorption profile. Astron Lett 34:574–580

    Article  ADS  Google Scholar 

  • d’Eon E, McCormick J (2019) Radiative transfer in half spaces of arbitrary dimension. arXiv:1905.07825v1

  • Domke H (1973) Multiple scattering of polarized light in a semiinfinite atmosphere with small true absorption. Sov Astron 17:81–87

    ADS  Google Scholar 

  • Domke H, Ivanov VV (1976) Asymptotics of Green’s function of the transfer equation for polarized radiation. Sov Astron 19:624–626

    ADS  MathSciNet  Google Scholar 

  • Dumont S, Omont A, Pecker J-C, Rees D (1977) Resonance line polarization: the line core. Astron Astrophys 654:675–681

    ADS  Google Scholar 

  • Eddington AS (1926) The internal constitution of the stars. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Eddington AS (1929) The formation of absorption lines. Mon Not R Astron Soc 89:620–636

    Article  ADS  MATH  Google Scholar 

  • Faurobert M (1987) Linear polarization of resonance lines in the absence of magnetic fields. I. Slabs of finite optical thickness. Astron Astrophys 178:269–276; (1988) Linear polarization of resonance lines in the absence of magnetic fields. II. Semi-infinite atmospheres. ibid 194:268–278

    Google Scholar 

  • Faurobert-Scholl M, Frisch H (1989) Asymptotic analysis of resonance polarization and escape probability approximation. Astron Astrophys 219:338–351

    ADS  Google Scholar 

  • Feller W (1966) An introduction to probability theory and its applications, vol II. Wiley, New York

    MATH  Google Scholar 

  • Frisch H (1998) The Hanle effect. The density matrix and scattering approaches to the protect sqrt epsilon-law. Astron Astrophys 338:683–693

    ADS  Google Scholar 

  • Frisch H (2019) Nonconservative Rayleigh scattering. A perturbation approach. Astron Astrophys 625:A125

    Article  ADS  Google Scholar 

  • Frisch U, Frisch H (1975) Non-LTE transfer. \(\sqrt{\epsilon }\) revisited. Mon Not R Astron Soc 173:167–182

    Article  ADS  Google Scholar 

  • Frisch U, Frisch H (1977) Non-LTE transfer. III. Asymptotic expansion for small epsilon. Mon Not R Astron Soc 181:273–280

    Article  ADS  Google Scholar 

  • Grachev SI (2001) Transfer of polarized radiation: nonlinear integral equations for I-matrices in the general case and for resonance scattering in a weak magnetic field. Astrophys 44:369–381

    Article  ADS  Google Scholar 

  • Grachev SI (2014) The formation of polarized lines: factorization of the Hanle phase matrix and \(\sqrt{\epsilon }\) law in the most general form. Vestn St Petersburg Univ 59:632–639 (in Russian)

    Google Scholar 

  • Gandorfer A (2000–2005) The second solar spectrum. vdf Hochschulverlag AG an der ETH, Zurich (vol. I, 2000, vol. II, 2002, vol. III, 2005)

    Google Scholar 

  • Grigoriev VV, Nagirner DI, Grachev SI (2019) H-functions in radiative transfer theory: calculation of Voigt functions and justification of a model for formation of cyclotron lines in the spectra of neutron stars. Astrophys 62:129–146

    Article  ADS  Google Scholar 

  • Halpern O, Lueneburg RK, Clark O (1938) On multiple scattering of neutrons. I. Theory of the albedo of a plane boundary. Phys Rev 53:173–183, (1939) ibid 56, 1068; (1949) Multiple scattering of neutrons. II. Diffusion in a plate of finite thickness. ibid 76:1811–1819

    Google Scholar 

  • Heaslet MA, Warming RF (1968) Theoretical predictions of spectral line formation by noncoherent scattering. J Quant Spectrosc Radiat Transfer 8:1101–1146

    Article  ADS  Google Scholar 

  • Holstein T (1947) Imprisonment of resonance radiation in gases. Phys Rev 72:1212–1233

    Article  ADS  MATH  Google Scholar 

  • Hopf E (1930) Remarks on the Schwarzschild-Milne model of the outer layers of a star. Mon Not R Astron Soc 90:287–293

    Article  ADS  MATH  Google Scholar 

  • Hopf E (1934) Mathematical problems of radiative equilibrium. Cambridge University Press, Cambridge

    Google Scholar 

  • Hubeny I (1987) Probabilistic interpretation of radiative transfer. I. The square root of epsilon law. II. Rybicki equation. Astron Astrophys 185:332–342

    ADS  MathSciNet  Google Scholar 

  • Hubeny I, Mihalas D (2015) Theory of stellar atmospheres. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Hummer DG (1968) Non-coherent scattering. III. The effect of continuous absorption on the formation of spectral lines. Mon Not R Astron Soc 138:73–108

    Article  ADS  Google Scholar 

  • Hummer DG, Stewart JC (1966) Thermalization lengths and the homogeneous transfer equation in line formation. Astrophys J 146:290–294

    Article  ADS  Google Scholar 

  • Ibragimov IA, Linnik YV (1965) Independent and linearly connected variables. Nauka Publ, Moscow (in Russian)

    Google Scholar 

  • Ivanov VV (1960) On diffusion of radiation with frequency redistribution in one-dimensional medium. Vestn LGU #19:117–123 (in Russian)

    Google Scholar 

  • Ivanov VV (1962) Diffusion of resonance radiation in stellar atmospheres and nebulae I. Semi-infinite medium. Sov Astron 6:793–801

    ADS  Google Scholar 

  • Ivanov VV (1965) Scattering of light in an atmosphere of finite optical thickness. Sov Astron 8:874–881

    ADS  MathSciNet  Google Scholar 

  • Ivanov VV (1970) Transfer of resonance radiation in purely scattering media. I. Semi-infinite medium. J Quant Spectrosc Radiat Transf 10:665–680 (in Russian)

    Article  ADS  MathSciNet  Google Scholar 

  • Ivanov VV (1971) Transfer of radiation in a spectral line. In: Ivanov AP (ed) Theoretical and applied problems of light scattering. Nauka i Tekhnika Publ. Co., Minsk, pp 93–113 (in Russian)

    Google Scholar 

  • Ivanov VV (1973) Transfer of radiation in spectral lines. NBS Special Publ \(\# 385\). US Gov Print Office, Washington

    Google Scholar 

  • Ivanov VV (1985) The transfer of line radiation. IV. A long-standing puzzle. Sov Astron 29:162–167

    ADS  Google Scholar 

  • Ivanov VV (1990) Nonmagnetic polarization of the Doppler cores of Fraunhofer resonance lines. Sov Astron 34:621–625

    ADS  Google Scholar 

  • Ivanov VV (1994) Resolvent method: exact solutions of half-space transport problems by elementary means. Astron Astrophys 286:328–337

    ADS  Google Scholar 

  • Ivanov VV (1995) Generalized Rayleigh scattering. I. Basic theory. Astron Astrophys 303:609–620

    ADS  Google Scholar 

  • Ivanov VV, Sabashvili ShA (1972) Transfer of resonance radiation and photon random walks. Astrophys Space Sci 17:13–22

    Article  ADS  Google Scholar 

  • Ivanov VV, Serbin VM (1984) The transfer of line radiation. II. Approximate solutions for semi-infinite atmospheres. Sov Astron 28:524–531

    ADS  Google Scholar 

  • Ivanov VV, Grachev SI, Loskutov VM (1997) Polarized line formation by resonance scattering. I. Basic formalism. Astron Astrophys 318:315–326; Polarized line formation by resonance scattering. II. Conservative case. ibid 321:968–984

    Google Scholar 

  • Kukushkin AB, Sdvizhenskii PA (2016) Automodel solutions for Levy flight-based transport on a uniform background. J Phys A: Math Theor 49:255002

    Article  ADS  MATH  Google Scholar 

  • Landi Degl’Innocenti E (1979) Non-LTE transfer. An alternative derivation for \(\sqrt{\epsilon }\). Mon Not R Astron Soc 186:369–375

    Article  ADS  Google Scholar 

  • Landi Degl’Innocenti E, Bommier V (1994) Resonance line polarization for arbitrary magnetic fields in optically thick media. III. A generalization of the \(\sqrt{\epsilon }\)-law. Astron Astrophys 284:865–873

    ADS  Google Scholar 

  • Landi Degl’Innocenti E, Landolfi H (2004) Polarization in spectral lines. Kluwer Academic Publishers, New York

    Google Scholar 

  • Lommel E (1889) Die Photometrie der diffusen Zuruckwefung. Ann Phys U Chem 36:473–502

    Article  ADS  MATH  Google Scholar 

  • Loskutov VM, Ivanov VV (2007) Polarized line formation by resonance scattering: Lorentz profile. Astrophys 50:157–174

    Article  ADS  Google Scholar 

  • Majumdar SN, Mounaix Ph, Schehr G (2014) On the gap and time interval between the first two maxima of long random walks. J Stat Mech P09013

    Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. WH Freeman, New York

    Google Scholar 

  • Milne EA (1921) Radiative equilibrium in the outer layers of a star. Mon Not R Astron Soc 81:361–375

    Article  ADS  Google Scholar 

  • Milne EA (1930) Thermodynamics of the stars. In: Handbuch der Astrophysik, vol III, part I. Springer, Berlin, pp. 70–172 (reprinted in Menzel D (ed) (1966) Selected papers on the transfer of radiation. Dover Publications, New York, pp. 77–269)

    Google Scholar 

  • Mullikin TW (1966) The complete Rayleigh-scattered field within a homogeneous plane-parallel atmosphere. Astrophys J 145:886–931

    Article  ADS  MATH  Google Scholar 

  • Nagirner DI (1967) Asymptotic formulas for the X and Y functions in the theory of multiple scattering of radiation within a line. Astrophys 3:133–139

    Article  ADS  Google Scholar 

  • Nagirner DI (1975) The calculation of the profiles of spectral lines formed in a scattering atmosphere. Trudi Astron Obs LGU 31:3–99 (in Russian)

    ADS  MathSciNet  Google Scholar 

  • Nagirner DI (2007) Analytical methods in radiative transfer theory. Astrophys Space Sci Rev 13:1–440

    Google Scholar 

  • Nagirner DI, Ivanov VV (1965) H-functions in the theory of resonance radiation transfer. Astrophys 1:86–101

    ADS  Google Scholar 

  • Nikoghossian AG (2006) Statistical description of the radiation field in a homogeneous medium of finite optical thickness. Astrophys 49:228–239

    Article  ADS  Google Scholar 

  • Nikoghossian AG (2011) Bilinear integrals of the radiative transfer equation. Astrophys 54:242–249

    Article  ADS  Google Scholar 

  • Placzek G, Seidel W (1947) Milne’s problem in transport theory. Phys Rev 72:550–556

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pollaczek F (1952) Fonctions caracteristiques de certaines repartitions definies au moyen de la notion d’ordre. Application a la theorie des attentes. Comptes Rendus Acad Sci Paris, Ser IV 234:2334–2336

    MathSciNet  MATH  Google Scholar 

  • Rees DE, Saliba GJ (1982) Non-LTE resonance line polarization with partial redistribution effects. Astron Astrophys 115:1–7

    ADS  Google Scholar 

  • Rybicki GB (1977) Integrals of the transfer equation. I. Quadratic integrals for monochromatic, isotropic scattering. Astrophys J 213:165–176

    Article  ADS  MathSciNet  Google Scholar 

  • Rybicki GB, Hummer DG (1969) Non-coherent scattering. V. Thermalization distance and their distribution function. Mon Not R Astron Soc 144:313–323

    Article  ADS  Google Scholar 

  • Serbin VM (1985) The transfer of line radiation. III. Approximate solutions for finite-thickness atmospheres. Sov Astron 29:155–161

    ADS  Google Scholar 

  • Sobolev VV (1949) Non-coherent light scattering in stellar atmospheres. Astron Zhurn 26:129–137 (in Russian)

    Google Scholar 

  • Sobolev VV (1963) A treatise on radiative transfer. Van Nostrand, Princeton

    Google Scholar 

  • Sparre-Andersen E (1953) On the fluctuations of sums of random variables. Math Scand 1:263–285; (1954) On the fluctuations of sums of random variables II. ibid 2:195–223

    Google Scholar 

  • Spitzer F (1957) The Wiener-Hopf equation whose kernel is a probability density. Duke Math J 24:327–343

    Article  MathSciNet  MATH  Google Scholar 

  • Stenflo JO, Stenholm L (1976) Resonance-line polarization. II. Calculations of linear polarization in solar UV emission lines. Astron Astrophys 46:69–79

    ADS  Google Scholar 

  • Stenflo JO, Baur TG, Elmore DF (1980) Resonance-line polarization: IV. Observations of non-magnetic line polarization and its center-to-limb variations. Astron Astrophys 84:60–67

    ADS  Google Scholar 

  • S̆tĕpán J, Bommier V (2007) A generalized \(\sqrt{\epsilon }\)-law. The role of unphysical source terms in resonance line polarization transfer and its importance as an additional test of NLTE radiative transfer codes. Astron Astrophys 468:797–801

    Google Scholar 

  • Trujillo Bueno J, S̆tĕpán J, Belluzzi L et al. (2018) CLASP constraints on the magnetization and geometrical complexity of the chromosphere-corona transition region. Astrophys J 866:L15

    Google Scholar 

  • Uchaikin VV (2003) Self-similar anomalous diffusion and Levy-stable laws. Sov Phys Usp 46:821–849

    Article  Google Scholar 

  • van de Hulst HC (1980) Multiple light scattering. Academic, New York

    Google Scholar 

  • Viik T (1986) An efficient method to calculate Ambarzumian/Chandrasekhar’s and Hopf’s functions. Astrophys Space Sci 127:285–307

    Article  ADS  MATH  Google Scholar 

  • Viik T (1990) Rayleigh-Cabannes scattering in planetary atmospheres. III. The Milne problem in conservative atmospheres. Earth Moon Planets 49:163–175

    Article  ADS  Google Scholar 

  • Viik T (2016) On the planetary and Milne problems in complex radiative transfer. J Quant Spectrosc Radiat Transf 183:162–167

    Article  ADS  Google Scholar 

  • Warming RF (1970) The direct calculation of the H-function for completely noncoherent scattering. Astrophys J 159:593–604

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is indebted to A. V. Dementiev for calculations and preparing figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ivanov .

Editor information

Editors and Affiliations

Addendum

Addendum

In this Appendix the Wiener–Hopf integral equation for the source function \(S(\tau )\) with the free term \(Q=Q(\tau )\) and parameter \(\lambda \equiv 1-\epsilon \), i.e., the equation

$$\begin{aligned} S(\tau )=\lambda \int \limits _0^\infty K(\tau -\tau ')\,S(\tau ')\,d\tau '+Q(\tau ) \end{aligned}$$
(A.1)

will be written in short as

$$\begin{aligned} S=\lambda \varLambda S+Q. \end{aligned}$$
(A.2)

The Green function \(G(\tau ,\tau _1)\) of Eq. (A.1)

$$\begin{aligned} G=\lambda \varLambda G+\delta (\tau -\tau _1) \end{aligned}$$
(A.3)

provides the solution of Eq. (A.2) for an arbitrary \(Q(\tau )\):

$$\begin{aligned} S(\tau )=\int \limits _0^\infty G(\tau ,\tau _1)\,Q(\tau _1)\,d\tau _1. \end{aligned}$$
(A.4)

Now, let \(G_\infty (\tau )\) be the Green function for an infinite medium, i.e., the solution of

$$\begin{aligned} G_\infty =\lambda \varLambda _\infty G_\infty +\delta (\tau ), \end{aligned}$$
(A.5)

where \(\varLambda _\infty \) is the operator of the same form as \(\varLambda \) is, but with integration with respect to \(\tau '\) from \(-\infty \) to \(\infty \), and not \((0, \infty )\).

The aim of this Addendum is to show, following Ivanov (1994), how the explicit expression for the H–function given by Eq. (65) can be derived by elementary means. First of all, we note that H(z) is essentially the Laplace transform of the surface Green function \(\overline{G}_0\), or, to be more accurate,

$$\begin{aligned} H(1/s)=\overline{G}_0(s)\equiv \int \limits _0^\infty G_0(\tau )\,\mathrm{e}^{-s\tau }\,d\tau , \end{aligned}$$
(A.6)

so that we want to show that

$$\begin{aligned} \ln {\overline{G}_0(s)}=-\,\frac{s}{2\pi }\,\int \limits _{-\infty }^{\infty } \ln {\bigl (1-\lambda \widetilde{K}(\omega )\bigr )}\, \frac{d\omega }{s^2+\omega ^2}\,. \end{aligned}$$
(A.7)

Here \(\widetilde{K}(\omega )\) is the Fourier transform of the kernel function \(K(\tau )\) (Eq. (47).

To get a hint on how we can get the desirable result, let us compare (A.7) with the expression for the Green function \(G_\infty \) for the whole space

$$\begin{aligned} G_\infty (\tau )= \varPhi _\infty (\tau )+\delta (\tau ) = \frac{1}{2\pi }\int \limits _{-\infty }^{\infty } \frac{\lambda \widetilde{K}(\omega )}{1-\lambda \widetilde{K}(\omega )}\; \mathrm{e}^{-i\tau \omega }\,d\omega +\delta (\tau ), \end{aligned}$$
(A.8)

which is easily obtained by applying the Fourier transform to the convolution equation (A.5) for \(G_\infty \) for the whole space. The comparison enables one to reveal that

$$\begin{aligned} \lambda \frac{\partial \ln {\overline{G}_0(s)}}{\partial \lambda }=\overline{\varPhi }_{\infty }(s), \end{aligned}$$
(A.9)

where \(\overline{\varPhi }_{\infty }(s)\) is the Laplace transform of the non-singular part of \(G_\infty (\tau ).\)

Hence to get (A.7), it suffices to prove (A.9). And this is a non-linear relation between the Laplace transforms of the Green functions for full space and for half-space. Somewhat unexpectedly, it involves the derivative with respect to the parameter \(\lambda \). This derivative with respect to \(\lambda \) is the key in obtaining Eq. (A.7) by elementary means.

Now it is easily seen how we have to proceed. Using the equation that defines the half-space surface Green function

$$\begin{aligned} G_0=\lambda \varLambda G_0+\delta (\tau ) \end{aligned}$$
(A.10)

one gets

$$\begin{aligned} \frac{\partial G_0}{\partial \lambda }=\lambda \varLambda \,\frac{\partial G_0}{\partial \lambda }+ \varLambda \, G_0. \end{aligned}$$
(A.11)

By (A.10), the term \(\varLambda \, G_0\) in the right hand side (RHS) of (A.11) equals \(\lambda ^{-1}\bigl (G_0(\tau )-\delta (\tau )\bigr )\). Thus, Eq. (A.11) may be looked at as the equation of our usual form (A.2) for the function \({\partial G_0}/{\partial \lambda }\) with the free term

$$\begin{aligned} Q(\tau )=\lambda ^{-1}\bigl (G_0(\tau )-\delta (\tau )\bigr ). \end{aligned}$$
(A.12)

Substituting this expression for Q into (A.4) and using the symmetry of \(G(\tau ,\tau _1)\), we obtain

$$\begin{aligned} \lambda \frac{\partial {{G}_0(\tau )}}{\partial \lambda }=\int \limits _0^\infty G(\tau _1,\tau )\bigl [G_0(\tau _1)-\delta (\tau _1)\bigr ]\,d\tau _1. \end{aligned}$$
(A.13)

In the RHS of this equation there is a product of three functions \(G_0\) (see Eq. (9) for \(G(\tau ,\tau _1)\)). Now, we make the Laplace transformation in \(\tau \) (with the parameter of the transformation s) and substitute for \(\overline{G}(\tau _1, s)\) in the RHS the expression

$$\begin{aligned} \overline{G}(\tau _1, s)=\overline{G}_0(s)\int \limits _0^{\tau _1} G_0(\tau _1-t)\,\mathrm{e}^{-st}\,dt. \end{aligned}$$
(A.14)

This expression for \(\overline{G}(\tau _1, s)\) is obtained from Eq. (9) by applying the Laplace transformation in \(\tau \). As a result, we get the double integral. By first changing the order of integration and then putting \(\tau _1=\tau +t\) we obtain

$$\begin{aligned}&\lambda \frac{\partial {\overline{G}_0(s)}}{\partial \lambda }=\overline{G}_0(s)\int \limits _0^\infty \int \limits _0^{\tau _1} G_0(\tau _1-t)\,\Bigl [G_0(\tau _1)-\delta (\tau _1)\Bigr ]\,\mathrm{e}^{-st}\,dt\,d\tau _1 \\&\qquad \qquad =\overline{G}_0(s)\int \limits _0^\infty \int \limits _t^{\infty }\Biggl ( G_0(\tau _1-t)\,\Bigl [G_0(\tau _1)-\delta (\tau _1)\Bigr ]\,d\tau _1\Biggr )\,\mathrm{e}^{-st}\,dt \nonumber \end{aligned}$$
(A.15)
$$\begin{aligned}\qquad \quad =\overline{G}_0(s)\int \limits _0^\infty \Biggl (\int \limits _0^{\infty } G_0(\tau )\,G_0(\tau +t)\,d\tau -\delta (t)\Biggr )\mathrm{e}^{-st}\,dt. \end{aligned}$$
(A.16)

Using Eq. (13) (p. 5) and taking into account that \(G_\infty (t)=\varPhi _\infty (t)+\delta (t)\), we find

$$ \lambda \frac{\partial {\overline{G}_0(s)}}{\partial \lambda }=\overline{G}_0(s)\int \limits _0^\infty \varPhi _\infty (t)\,\mathrm{e}^{-st}\,dt, $$

and this is identical to (A.9). Equation (A.7) is thus proved.  

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ivanov, V.V. (2021). \(\sqrt{\epsilon }\) Law: Centennial of the First Exact Result of Classical Radiative Transfer Theory. In: Kokhanovsky, A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, Cham. https://doi.org/10.1007/978-3-030-71254-9_1

Download citation

Publish with us

Policies and ethics