Skip to main content

Overview of the Role of Nitrogen in Copper Pollution and Bioremediation Mediated by Plant–Microbe Interactions

  • Chapter
  • First Online:
Soil Nitrogen Ecology

Abstract

Nitrogen is an essential and incredibly versatile element for living organisms. In agriculture, nitrogen is a key element to understand soil and aquatic pollution, very often associated with heavy metal pollution. In this chapter, we overview the correlations between nitrogen and copper pollution, mediated by antimicrobial compounds used in agriculture. Plant Growth-Promoting Microorganisms (PGPM) are a heterogeneous group of microorganisms ranging from Bacteria (PGPBs) to Archaea and Fungi, which can modulate plant growth by conferring direct and indirect benefits, such as phytohormone production and stress alleviation. Many of these microorganisms are tolerant to high concentrations of Copper, increasing plant productivity even under metallic stress. We suggest the use of bacterial and fungal species associated with plant species for the bioremediation of degraded soil and water bodies, alarm about the bioaugmentation of copper through economically relevant plants, and review plant and microbial species applied to bioremediation.

Geórgia Peixoto Bechara Mothé and Gabriel Quintanilha-Peixoto contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altimira F, Yáñez C, Bravo G, González M, Rojas LA, Seeger M (2012) Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of Central Chile. BMC Microbiol 12:1–12

    Article  CAS  Google Scholar 

  • An L, Pan Y, Wang Z, Zhu C (2011) Heavy metal absorption status of five plant species in monoculture and intercropping. Plant Soil 345:237–245

    Article  CAS  Google Scholar 

  • Andreazza R, Camargo FADO, Antoniolli ZI, Quadro MS, Barcelos AA (2013) Biorremediação de áreas contaminadas com cobre. Rev Ciênc Agrárias 36:127–136

    Google Scholar 

  • Avanzi IR, Gracioso LH, Baltazar MDPG, Karolski B, Perpetuo EA, do Nascimento CAO (2017) Rapid bacteria identification from environmental mining samples using MALDI-TOF MS analysis. Environ Sci Pollut Res 24:3717–3726

    Article  CAS  Google Scholar 

  • Aviles-Garcia ME, Flores-Cortez I, Hernández-Soberano C, Santoyo G, Valencia-Cantero E (2016) La rizobacteria promotora del crecimiento vegetal Arthrobacter agilis UMCV2 coloniza endofíticamente a Medicago truncatula. Rev Argent Microbiol 48:342–346

    PubMed  Google Scholar 

  • Bakker ES, Van Donk E, Declerck SAJ, Helmsing NR, Hidding B, Nolet BA (2010) Effect of macrophyte community composition and nutrient enrichment on plant biomass and algal blooms. Basic Appl Ecol 11:432–439

    Article  Google Scholar 

  • Beijerinck MW (1888) A bactéria do nódulo da raiz. Botanische Zeitung 46:725–804

    Google Scholar 

  • Berg G, Egamberdieva D, Lugtenberg B, Hagemann M (2010) Symbiotic plant–microbe interactions: stress protection, plant growth promotion, and biocontrol by Stenotrophomonas. In: Symbioses and stress. Springer, Dordrecht, pp 445–460

    Chapter  Google Scholar 

  • Boechat CL, Giovanella P, Amorim MB, de Sá ELS, de Oliveira Camargo FA (2017) Metal-resistant rhizobacteria isolates improve Mucuna deeringiana phytoextraction capacity in multi-metal contaminated soils from a gold mining area. Environ Sci Pollut Res 24:3063–3073

    Article  CAS  Google Scholar 

  • Chenniappan C, Narayanasamy M, Daniel GM, Ramaraj GB, Ponnusamy P, Sekar J, Ramalingam PV (2019) Biocontrol efficiency of native plant growth promoting rhizobacteria against rhizome rot disease of turmeric. Biol Control 129:55–64

    Article  CAS  Google Scholar 

  • Chokshi K, Pancha I, Ghosh A, Mishra S (2017) Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus. Biotechnol Biofuels 10:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crusberg TC (2013) Biomineralization of copper by a fungus revealed by SEM. Microsc Anal 18:11–13

    Google Scholar 

  • de Andrade FM, de Assis Pereira T, Souza TP, Guimarães PHS, Martins AD, Schwan RF et al (2019) Beneficial effects of inoculation of growth-promoting bacteria in strawberry. Microbiol Res 223:120–128

    Article  PubMed  Google Scholar 

  • de Angeli JTSK, de Oliveira Boina WL, Sigolo JB (2019) Disponibilidade de cobre em lodo de curtume: Potencial contaminante químico do solo. Colloquium Vitae 11(2):1–4

    Article  Google Scholar 

  • De la Iglesia R, Valenzuela-Heredia D, Pavissich JP, Freyhoffer S, Andrade S, Correa JA, González B (2010) Novel polymerase chain reaction primers for the specific detection of bacterial copper P-type ATPases gene sequences in environmental isolates and metagenomic DNA. Lett Appl Microbiol 50:552–562

    Article  PubMed  CAS  Google Scholar 

  • Döbereiner J (1966) Azotobacter paspali sp. n., uma bactéria fixadora de nitrogênio na rizosfera de Paspalum. Pesq Agrop Brasileira 1:357–365

    Google Scholar 

  • Döbereiner J, Ruschel AP (1958) Uma nova espécie de Beijerinckia. Rev Biol 1:261–272

    Google Scholar 

  • dos Santos Silva C, de Araújo RGV, de Lima JRB, dos Santos TMC, da Silva Nascimento M, Montaldo Y, da Silva JM (2019) Resistence induction in Brassica oleracea var. acephala to xanthomonas campestris pv. Campestris and growth promotion by endophytic/bactéria. Brazilian J Dev 5:22401–22414

    Article  Google Scholar 

  • Elias, S., Baldani, V., & Berbara, R. (2018). Características morfológicas e resistência à metais pesados de bactérias diazotróficas isoladas de plantas de Brachiaria decumbens crescidas em solo contaminado. Embrapa Agrobiologia-Capítulo em livro técnico Infoteca-E

    Google Scholar 

  • EPA, Environmental Protection Agency. (2007) Framework for metals risk assessment. EPA 1205/R-07/001. Office of Science advisor, risk assessment forum. http://www.epa.gov/osa/metalsframework

  • Figueiredo MDVB, Seldin L, de Araujo FF, Mariano RDLR (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In: Plant growth and health promoting bacteria. Springer, Berlin, pp 21–43

    Chapter  Google Scholar 

  • Fomina M, Bowen AD, Charnock JM, Podgorsky VS, Gadd GM (2017) Biogeochemical spatio-temporal transformation of copper in Aspergillus niger colonies grown on malachite with different inorganic nitrogen sources. Environ Microbiol 19:1310–1321

    Article  CAS  PubMed  Google Scholar 

  • Frank B (1889) Über die Pilzsymbiose der Leguminosen. In: Berichte Deutschen Botanischen Gesellschaft. Wiley, Hoboken, NJ

    Google Scholar 

  • Galvão P (2010) Interação entre plantas e bactérias promotoras do crescimento vegetal. Embrapa Agrobiologia, Seropédica

    Google Scholar 

  • Gilbert S, Xu J, Acosta K, Poulev A, Lebeis S, Lam E. (2018) Bacterial production of indole related compounds reveals their role in associationbetween duckweeds and endophytes. Frontiers in chemistry 6:265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15

    Article  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:096–102

    CAS  Google Scholar 

  • Gutiérrez-Barranquero JA, de Vicente A, Carrión VJ, Sundin GW, Cazorla FM (2013) Recruitment and rearrangement of three different genetic determinants into a conjugative plasmid increase copper resistance in Pseudomonas syringae. Appl Environ Microbiol 79:1028–1033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He H, Veneklaas EJ, Kuo J, Lambers H (2014) Physiological and ecological significance of biomineralization in plants. Trends Plant Sci 19:166–174

    Article  CAS  PubMed  Google Scholar 

  • Huang N, Mao J, Zhao Y, Hu M, Wang X (2019) Multiple transcriptional mechanisms collectively mediate copper resistance in Cupriavidus gilardii CR3. Environ Sci Technol 53:4609–4618

    Article  CAS  PubMed  Google Scholar 

  • Irawati W, Parhusip AJN, Sopiah N, Tnunay JA (2017) The role of heavy metals-resistant Bacteria Acinetobacter sp. in copper phytoremediation using Eichhornia crasippes [(Mart.) Solms]. KnE Life Sci 3:208–220

    Article  Google Scholar 

  • Ishizawa H, Kuroda M, Inoue K, Inoue D, Morikawa M, Ike M (2019) Colonization and competition dynamics of plant growth-promoting/inhibiting bacteria in the phytosphere of the duckweed lemna minor. Microb Ecol 77:440–450

    Article  CAS  PubMed  Google Scholar 

  • Ishizawa H, Ogata Y, Hachiya Y, Tokura KI, Kuroda M, Inoue D, Ike M (2020) Enhanced biomass production and nutrient removal capacity of duckweed via two-step cultivation process with a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23. Chemosphere 238:124682

    Article  CAS  PubMed  Google Scholar 

  • Jian L, Bai X, Zhang H, Song X, Li Z (2019) Promotion of growth and metal accumulation of alfalfa by coinoculation with Sinorhizobium and agrobacterium under copper and zinc stress. PeerJ 7:e6875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ju W, Liu L, Fang L, Cui Y, Duan C, Wu H (2019) Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicol Environ Saf 167:218–226

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Dolma K, Kaur N, Malhotra A, Kumar N, Dixit P, Choudhury AR (2015) Marine microbe as nano-factories for copper biomineralization. Biotechnol Bioprocess Eng 20:51–57

    Article  CAS  Google Scholar 

  • Keyeo F, Ai’shah ON, Amir HG (2011) The effects of nitrogen fixation activity and phytohormone production of diazotroph in promoting growth of rice seedlings. Biotechnology 10:267–273

    Article  CAS  Google Scholar 

  • Khan AL, Waqas M, Asaf S, Kamran M, Shahzad R, Bilal S, Al-Rawahi A (2017) Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environ Exp Bot 133:58–69

    Article  CAS  Google Scholar 

  • Kraft B, Tegetmeyer HE, Sharma R, Klotz MG, Ferdelman TG, Hettich RL, Strous M (2014) The environmental controls that govern the end product of bacterial nitrate respiration. Science 345:676–679

    Article  CAS  PubMed  Google Scholar 

  • La Torre A, Iovino V, Caradonia F (2018) Copper in plant protection: current situation and prospects. Phytopathol Mediterr 57:201–236

    CAS  Google Scholar 

  • Lacava P, Melo I, Pereira J (2018) Controle biológico e simbiótico de insetos-pragas e doenças por micro-organismos endofíticos. Bioteconol Microb Ambiental 1:83–104

    Google Scholar 

  • Lamichhane JR, Osdaghi E, Behlau F, Köhl J, Jones JB, Aubertot JN (2018) Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron Sustain Dev 38:28

    Article  CAS  Google Scholar 

  • Laporte D, Rodríguez F, González A, Zúñiga A, Castro-Nallar E, Sáez CA, Moenne A (2020) Copper-induced concomitant increases in photosynthesis, respiration, and C, N and S assimilation revealed by transcriptomic analyses in Ulva compressa (Chlorophyta). BMC Plant Biol 20:1–16

    Article  CAS  Google Scholar 

  • Li K, Pidatala VR, Shaik R, Datta R, Ramakrishna W (2014a) Integrated metabolomic and proteomic approaches dissect the effect of metal-resistant bacteria on maize biomass and copper uptake. Environ Sci Technol 48:1184–1193

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Ma Z, Hao X, Rensing C, Wei G (2014b) Genes conferring copper resistance in Sinorhizobium meliloti CCNWSX0020 also promote the growth of Medicago lupulina in copper-contaminated soil. Appl Environ Microbiol 80:1961–1971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu F, Csetenyi L, Gadd GM (2019) Amino acid secretion influences the size and composition of copper carbonate nanoparticles synthesized by ureolytic fungi. Appl Microbiol Biotechnol 103:7217–7230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malavolta E (2006) Manual de nutrição mineral de plantas. Agronômica Ceres, Sau Paulo, Brasil

    Google Scholar 

  • Newton WE (2000) Nitrogen fixation in perspective. In: Nitrogen fixation: from molecules to crop productivity. Springer, Dordrecht, pp 3–8

    Google Scholar 

  • Ngah WW, Teong LC, Hanafiah MM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456

    Article  CAS  Google Scholar 

  • Ni SQ, Ni JY, Hu DL, Sung S (2012) Effect of organic matter on the performance of granular anammox process. Bioresour Technol 110:701–705

    Article  CAS  PubMed  Google Scholar 

  • Nunes I, Jacquiod S, Brejnrod A, Holm PE, Johansen A, Brandt KK, Priemé A, Sørensen SJ (2016) Coping with copper: legacy effect of copper on potential activity of soil bacteria following a century of exposure. FEMS Microbiol Ecol 92:fiw175

    Article  PubMed  CAS  Google Scholar 

  • Ouyang F, Zhai H, Ji M, Zhang H, Dong Z (2016) Physiological and transcriptional responses of nitrifying bacteria exposed to copper in activated sludge. J Hazard Mater 301:172–178

    Article  CAS  PubMed  Google Scholar 

  • Pallavi KP, Gupta PC (2013) Effect of different carbon and nitrogen sources on solubilization of insoluble inorganic phosphate by psychrotolerant bacterial strains. Bioscan 8:1299–1302

    CAS  Google Scholar 

  • Penha-Lopes G, Torres P, Cannicci S, Narciso L, Paula J (2011) Monitoring anthropogenic sewage pollution on mangrove creeks in southern Mozambique: a test of Palaemon concinnus Dana, 1852 (Palaemonidae) as a biological indicator. Environ Pollut 159:636–645

    Article  CAS  PubMed  Google Scholar 

  • Pérez J, Lotti T, Kleerebezem R, Picioreanu C, van Loosdrecht MC (2014) Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: a model-based study. Water Res 66:208–218

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Montaño F, Alías-Villegas C, Bellogín RA, Del Cerro P, Espuny MR, Jiménez-Guerrero I, López-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  PubMed  Google Scholar 

  • Pérez-Portuondo I, Meriño-Reyes L, Pérez-Silva RM, Abalos-Rodríguez A, Weyens N, Cuypers A (2019) Plantas herbáceas de ambientes contaminados como fuentes de bacterias degradadoras y promotoras del crecimiento vegetal. Cultivos Tropicales 40(2):e01

    Google Scholar 

  • Przemieniecki SW, Kurowski TP, Kotlarz K, Krawczyk K, Damszel M, Pszczółkowska A, Kacprzak-Siuda K, Chareńska A, Mastalerz J (2019) Bacteria isolated from treated wastewater for biofertilization and crop protection against Fusarium spp pathogens. J Soil Sci Plant Nutr 19:1–11

    Article  CAS  Google Scholar 

  • Rab A, Khalil SK, Asim M, Mehmood N, Fayyaz H, Khan I, Zahid S, Nawaz H (2016) Response of sorghum (Sorghum bicolor L.) extract type, concentration and application time to weeds weight, grain and biomass yield of wheat. Pure and applied. Biology 5:1

    Google Scholar 

  • Raij BV (1991) Fertilidade do solo e adubação (No. 631.42 R149f). Associaçao Brasileira para Pesquisa da Potassa e do Fosfato, Piracicaba, Brasil

    Google Scholar 

  • Renuka N, Guldhe A, Singh P, Bux F (2018) Combined effect of exogenous phytohormones on biomass and lipid production in Acutodesmus obliquus under nitrogen limitation. Energy Convers Manag 168:522–528

    Article  CAS  Google Scholar 

  • Reyes I, Bernier L, Simard RR, Antoun H (1999) Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol 28:281–290

    Article  CAS  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999

    Article  CAS  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Schütz L, Gattinger A, Meier M, Müller A, Boller T, Mäder P, Mathimaran N (2018) Improving crop yield and nutrient use efficiency via biofertilization—a global meta-analysis. Front Plant Sci 8:2204

    Article  PubMed  PubMed Central  Google Scholar 

  • Seshadri S, Ignacimuthu S, Lakshminarasimhan C (2004) Effect of nitrogen and carbon sources on the inorganic phosphate solubilization by different Aspergillus Niger strains. Chem Eng Commun 191:1043–1052

    Article  CAS  Google Scholar 

  • Sharma S, Singh B, Manchanda VK (2015) Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res 22:946–962

    Article  CAS  Google Scholar 

  • Shehzadi M, Fatima K, Imran A, Mirza MS, Khan QM, Afzal M (2016) Ecology of bacterial endophytes associated with wetland plants growing in textile effluent for pollutant-degradation and plant growth-promotion potentials. Plant Biosyst 150:1261–1270

    Article  Google Scholar 

  • Shen M, Liu L, Li DW, Zhou WN, Zhou ZP, Zhang CF et al (2013) The effect of endophytic Peyronellaea from heavy metal-contaminated and uncontaminated sites on maize growth, heavy metal absorption and accumulation. Fungal Ecol 6:539–545

    Article  Google Scholar 

  • Silva, J. M. M. D. (2019a) Bactérias solubilizadoras de fosfato inorgânico em solo preservado e antropizado da reserva biológica de Pedra Talhada-AL Bachelor's thesis, Brasil

    Google Scholar 

  • Silva, Jussara Tamires De Souza. (2019b). Promoção do crescimento de Salvinia auriculata aublet mediada por Enterobacter sp. Sob Estresse Por Cobre. Dissertação mestrado. Centro de Biociências e Biotecnologia da Universidade Estadual do Norte Fluminense Darcy Ribeiro

    Google Scholar 

  • Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41:122–137

    Article  CAS  PubMed  Google Scholar 

  • Souza RD, Ambrosini A, Passaglia LM (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Agrawal SB, Mondal MK (2015) A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Pollut Res 22:15386–15415

    Article  Google Scholar 

  • Suzuki W, Sugawara M, Miwa K, Morikawa M (2014) Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce). J Biosci Bioeng 118:41–44

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2013) Fisiologia vegetal, 5th edn. Editora Artmed, Porto Alegre

    Google Scholar 

  • Vymazal J (2011) Constructed wetlands for wastewater treatment: five decades of experience. Environ Sci Technol 45:61–69

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Liu Y, Li P, Wang Y, Yang J, Zhang W (2020) Micro-nanobubble aeration promotes senescence of submerged macrophytes with low total antioxidant capacity in urban landscape water. Environmental science: water research. Technology 6:523–531

    CAS  Google Scholar 

  • Weselowski B, Nathoo N, Eastman AW, Mac Donald J, Yuan ZC (2016) Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization biomass degradation and biofuel production. BMC Microbiol 16:1–10

    Article  CAS  Google Scholar 

  • Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L (2016) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res 23:8244–8259

    Article  CAS  Google Scholar 

  • Xing C, Chen J, Zheng X, Chen L, Chen M, Wang L, Li X (2020) Functional metagenomic exploration identifies novel prokaryotic copper resistance genes from the soil microbiome. Metallomics 12:387–395

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Cao Z, Zhang Y, Yuan Z, Lou Z, Xu X, Wang X (2018) A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere 195:351–364

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa Y, Jog R, Morikawa M (2018) Effects of co-inoculation of two different plant growth-promoting bacteria on duckweed. Plant Growth Regul 86:287–296

    Article  CAS  Google Scholar 

  • Yandigeri MS, Meena KK, Srinivasan R, Pabbi S (2011) Effect of mineral phosphate solubilization on biological nitrogen fixation by diazotrophic cyanobacteria. Indian J Microbiol 51:48–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Pei H, Jiang L, Hou Q, Nie C, Zhang L (2018) Phytohormone addition coupled with nitrogen depletion almost tripled the lipid productivities in two algae. Bioresour Technol 247:904–914

    Article  CAS  PubMed  Google Scholar 

  • Zhang LL, He XJ, Chen M, An RD, An XL, Li J (2014) Responses of nitrogen metabolism to copper stress in Luffa cylindrica roots. J Soil Sci Plant Nutr 14:616–624

    Google Scholar 

  • Zhao X, Do H, Zhou Y, Li Z, Zhang X, Zhao S, Wu D (2019) Rahnella sp. LRP3 induces phosphate precipitation of cu (II) and its role in copper-contaminated soil remediation. J Hazard Mater 368:133–140

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Huang R, Wang BZ, Bodelier PLE, Jia ZJ (2014) Competitive interactions between methane-and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil. Biogeosciences 11:3353–3368

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Chaves Intorne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mothé, G.P.B., Quintanilha-Peixoto, G., de Souza, G.R., Ramos, A.C., Intorne, A.C. (2021). Overview of the Role of Nitrogen in Copper Pollution and Bioremediation Mediated by Plant–Microbe Interactions. In: Cruz, C., Vishwakarma, K., Choudhary, D.K., Varma, A. (eds) Soil Nitrogen Ecology. Soil Biology, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-030-71206-8_12

Download citation

Publish with us

Policies and ethics