Skip to main content

Swarm of Inexpensive Heterogeneous Micro Aerial Vehicles

  • Conference paper
  • First Online:
Experimental Robotics (ISER 2020)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 19))

Included in the following conference series:

Abstract

A team of Micro Aerial Vehicles (MAVs), or a Swarm, is theoretically able to accomplish more complex tasks than a single robot by covering more area, gathering more data, and ensuring resilience to single-robot failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/tdinesh/hetro_swarm.

  2. 2.

    https://youtu.be/25ZvSxXsGMw

References

  1. Chung, S., Paranjape, A.A., Dames, P., Shen, S., Kumar, V.: A survey on aerial swarm robotics. IEEE Trans. Rob. 34(4), 837–855 (2018)

    Article  Google Scholar 

  2. Vásárhelyi, G., Virágh, C., Somorjai, G., Nepusz, T., Eiben, A.E., Vicsek, T.: Optimized flocking of autonomous drones in confined environments. Sci. Rob. 3(20) (2018)

    Google Scholar 

  3. Balázs, B., Vásárhelyi, G., Vicsek, T.: Adaptive leadership overcomes persistence-responsivity trade-off in flocking. J. Roy. Soc. Interface 17(167), 20190853 (2020)

    Article  Google Scholar 

  4. Intel. Intel Drone Light Show. https://tinyurl.com/y8zsn7te

  5. VergeAero. Verge Aero X1 Light Show. https://verge.aero/

  6. Kushleyev, A., Mellinger, D., Powers, C., Kumar, V.: Towards a swarm of agile micro quadrotors. Auton. Rob. 35(4), 287–300 (2013)

    Article  Google Scholar 

  7. Preiss, J.A., Honig, W., Sukhatme, G.S., Ayanian, N.: Crazyswarm: A large nano-quadcopter swarm. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3299–3304. IEEE (2017)

    Google Scholar 

  8. Turpin, M., Michael, N., Kumar, V.: Capt: concurrent assignment and planning of trajectories for multiple robots. IJRR 33(1), 98–112 (2014)

    Google Scholar 

  9. Alarifi, A., Al-Salman, A., Alsaleh, M., Alnafessah, A., Al-Hadhrami, S., Al-Ammar, M.A., Al-Khalifa, H.S.: Ultra wideband indoor positioning technologies: analysis and recent advances. Sensors 16(5), 707 (2016)

    Article  Google Scholar 

  10. Ledergerber, A., Hamer, M., D’Andrea, R.: A robot self-localization system using one-way ultra-wideband communication. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3131–3137. IEEE (2015)

    Google Scholar 

  11. Mueller, M.W., Hamer, M., D’Andrea, R.: Fusing ultra-wideband range measurements with accelerometers and rate gyroscopes for quadrocopter state estimation. In. IEEE ICRA, vol. 2015, pp. 1730–1736 (2015)

    Google Scholar 

  12. Shule, W., Almansa, C.M., Queralta, J.P., Zou, Z., Westerlund, T.: Uwb-based localization for multi-uav systems and collaborative heterogeneous multi-robot systems: a survey (2020)

    Google Scholar 

  13. Afanasov, M., Mottola, L., Whitehouse, K.: Poster: testbed for aerial drone applications. In: 2017 EWSN, pp. 192–193. Junction Publishing, USA (2017)

    Google Scholar 

  14. Sanchez-Lopez, J.L., Pestana, J., de la Puente, P., Carrio, A., Campoy, P.: Visual quadrotor swarm for the imav 2013 indoor competition. In: Armada, M.A., Sanfeliu, A., Ferre, M. (eds.) ROBOT2013: First Iberian Robotics Conference, pp. 55–63. Springer, Cham (2014)

    Chapter  Google Scholar 

  15. Sanchez-Lopez, J.L., Pestana, J., de la Puente, P., Campoy, P.: A reliable open-source system architecture for the fast designing and prototyping of autonomous multi-UAV systems: Simulation and experimentation. JIRS 84(1), 779–797 (2016)

    Google Scholar 

  16. Faigl, J., Krajník, T., Chudoba, J., Přeučil, L., Saska, M.: Low-cost embedded system for relative localization in robotic swarms. In: 2013 IEEE ICRA, pp. 993–998 (2013)

    Google Scholar 

  17. Lightbody, P., Krajník, T., Hanheide, M.: A versatile high-performance visual fiducial marker detection system with scalable identity encoding. In: Proceedings of the Symposium on Applied Computing, ser. SAC 2017, pp. 276–282 (2017)

    Google Scholar 

  18. Weinstein, A., Cho, A., Loianno, G., Kumar, V.: Visual inertial odometry swarm: an autonomous swarm of vision-based quadrotors. IEEE RAL 3(3), 1801–1807 (2018)

    Google Scholar 

  19. Li, S., Coppola, M., Wagter, C., de Croon, G.C.H.E.: An autonomous swarm of micro flying robots with range-based relative localization (2020)

    Google Scholar 

  20. Xu, H., Wang, L., Zhang, Y., Qiu, K., Shen, S.: Decentralized visual-inertial-uwb fusion for relative state estimation of aerial swarm (2020)

    Google Scholar 

  21. ModalAI. VOXL Flight board. https://www.modalai.com/

  22. Dragon Drone Development Kit. DDK. https://worldsway.com/product/dragon-drone-development-kit/

  23. Thakur, D., Loianno, G., Liu, W., Kumar, V.: Nuclear Environments Inspection with Micro Aerial Vehicles: Algorithms and Experiments. In: Xiao, J., Kröger, T., Khatib, O. (eds.) Proceedings of the 2018 ISER, pp. 191-200. Springer, Cham (2020)

    Google Scholar 

  24. Thakur, D., Loianno, G., Jarin-Lipschitz, L., Zhou, A., Kumar, V.: Autonomous inspection of a containment vessel using a micro aerial vehicle. In: IEEE SSRR, vol. 2019, pp. 1–7 (2019)

    Google Scholar 

  25. Wang, J., Olson, E.: Apriltag 2: efficient and robust fiducial detection. In. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2016, pp. 4193–4198 (2016)

    Google Scholar 

  26. Santos, M., Mayya, S., Notomista, G., Egerstedt, M.: Decentralized minimum-energy coverage control for time-varying density functions. In: International Symposium on Multi-Robot and Multi-Agent Systems (MRS), vol. 2019, pp. 155–161. IEEE (2019)

    Google Scholar 

  27. Pimenta, L.C., Kumar, V., Mesquita, R.C., Pereira, G.A.: Sensing and coverage for a network of heterogeneous robots. In: 47th IEEE Conference on Decision and Control, vol. 2008, pp. 3947–3952. IEEE (2008)

    Google Scholar 

  28. Xu, X., Diaz-Mercado, Y.: Multi-robot control using coverage over time-varying non-convex domains. In: ICRA (2020)

    Google Scholar 

  29. Tolstaya, E., Gama, F., Paulos, J., Pappas, G., Kumar, V., Ribeiro, A.: Learning decentralized controllers for robot swarms with gnn. CoRR, vol. abs/1903.10527 (2019)

    Google Scholar 

  30. Gama, F., Marques, A.G., Leus, G., Ribeiro, A.: Convolutional neural network architectures for signals supported on graphs. IEEE Trans. Signal Process. 67(4), 1034–1049 (2018). https://doi.org/10.1109/TSP.2018.2887403

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support from ARL Grant DCIST CRA W911NF-17-2-0181, NSF Grant CNS-1521617, ARO Grant W911NF-13-1-0350, ONR Grant N00014-20-1-2822, ONR Grant N00014-20-S-B001 and Qualcomm Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Thakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thakur, D., Tao, Y., Li, R., Zhou, A., Kushleyev, A., Kumar, V. (2021). Swarm of Inexpensive Heterogeneous Micro Aerial Vehicles. In: Siciliano, B., Laschi, C., Khatib, O. (eds) Experimental Robotics. ISER 2020. Springer Proceedings in Advanced Robotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-71151-1_37

Download citation

Publish with us

Policies and ethics