Skip to main content

Monogenic Stroke Diseases

  • Chapter
  • First Online:
Precision Medicine in Stroke
  • 457 Accesses

Abstract

Stroke is in most cases the consequence of a multifactorial predisposition. However, a number of rare monogenic diseases leading to stroke have been reported and several genes have been identified whose mutations lead to monogenic cerebral small vessel diseases (CSVD), inherited cerebral vascular malformations, and dysplasia. This review focuses on monogenic cerebral small vessel diseases and the recent genetic data obtained in this field which can be useful for precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tan RYY, Markus HS. Monogenic causes of stroke: now and the future. J Neurol. 2015;262:2601–16.

    Article  Google Scholar 

  2. Mancuso M, Arnold M, Bersano A, Burlina A, Chabriat H, Debette S, Enzinger C, Federico A, Filla A, Finsterer J, Hunt D, Lesnik Oberstein S, Tournier-Lasserve E, Markus HS. Monogenic cerebral small vessel diseases: diagnosis and therapy. Consensus Recommendations of the European Academy of Neurology. Eur J Neurol. 2020;27(6):909–27.

    Article  CAS  Google Scholar 

  3. Labauge P, Denier C, Bergametti F, Tournier-Lasserve E. Genetics of cavernous angiomas. Lancet Neurol. 2007;6:237–44.

    Article  CAS  Google Scholar 

  4. Joutel A, Faraci FM. Cerebral small vessel disease: insights and opportunities from mouse models of collagen IV-related small vessel disease and cerebral autosomal dominant arteriopathy with subcortical infarcts. Stroke. 2014;45(4):1215–21.

    Article  Google Scholar 

  5. Seyfried SA, Tournier-Lasserve E, Derry WB. Blocking signalopathic events to treat cerebral cavernous malformations. Trends Mol Med. 2020;26(9):874–87.

    Article  Google Scholar 

  6. Zeng X, Hunt A, Jin SC, Duran D, Gaillard J, Kahle KT. EphrinB2-EphB4-RASA1 signaling in human cerebrovascular development and disease. Trends Mol Med. 2019;25(4):265–86.

    Article  CAS  Google Scholar 

  7. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature. 1996;383:707–10.

    Article  CAS  Google Scholar 

  8. Chabriat H, Joutel A, Tournier-Lasserve E, Bousser MG. CADASIL yesterday, today and tomorrow. Eur J Neurol. 2020;27:1588–95.

    Article  CAS  Google Scholar 

  9. Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG. CADASIL. Lancet Neurol. 2009;8:643–53.

    Article  Google Scholar 

  10. Pipucci T, Maresca A, Magini P, et al. Homozygous NOTCH3 null mutation and impaired NOTCH3 signaling in recessive early-onset arteriopathy and cavitating leukoencephalopathy. EMBO Mol Med. 2015;7:849–57.

    Article  Google Scholar 

  11. Narayan SK, Gorman G, Kalaria RN, Ford GA, Chinnery PF. The minimum prevalence of CADASIL in northeast England. Neurology. 2012;78:1025–7.

    Article  CAS  Google Scholar 

  12. Rutten JW, Dauwerse HG, Gravesteijn G, et al. Archetypal Notch3 mutations frequent in public exome: implications for CADASIL. Ann Clin Transl Neurol. 2016;3:844–53.

    Article  CAS  Google Scholar 

  13. Rutten JW, Van Eijsden BJ, Duering M, Jouvent E, Opherk C, Pantoni L, et al. The effect of NOTCH3 pathogenic variant position on CADASIL disease severity: NOTCH3 EGFr 1–6 pathogenic variant are associated with a more severe phenotype and lower survival compared with EGFr 7–34 pathogenic variant. Genet Med. 2019;21:676–82.

    Article  CAS  Google Scholar 

  14. Rutten JW, Hack RJ, Duering M, Gravesteijn G, Dauwerse JG, et al. Broad phenotype of cysteine-altering Notch3 variants in UK biobank: CADASIL to non penetrance. Neurology. 2020;95:1835–43.

    Google Scholar 

  15. Maeda S, Nakayama H, Isaka H, Aihara Y, Nemoto S. Familial unusual encephalopathy of Binswanger’s type without hypertension. Folia Psychiatr Neurol Jpn. 1976;30:165–77.

    CAS  PubMed  Google Scholar 

  16. Nozaki H, Nishizawa M, Onodera O. Features of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke. 2014;45(11):3447–53.

    Article  Google Scholar 

  17. Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A, et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med. 2009;360:1729–39.

    Article  CAS  Google Scholar 

  18. Verdura E, Hervé D, Scharrer E, Amador MDM, Guyant-Maréchal L, Philippi A, et al. Heterozygous HTRA1 mutations are associated with autosomal dominant cerebral small vessel disease. Brain. 2015;138:2347–58.

    Article  Google Scholar 

  19. Nozaki H, Kato T, Nihonmatsu M, Saito Y, Mizuta I, Noda T, et al. Distinct molecular mechanisms of HTRA1 mutants in manifesting heterozygotes with CARASIL. Neurology. 2016;86:1964–74.

    Article  CAS  Google Scholar 

  20. Uemura M, Nozaki H, Kato T, et al. HTRA1 related cerebral small vessel disease: a review of the literature. Front Neurol. 2020;11:545.

    Article  Google Scholar 

  21. Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K, Massin P, et al. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med. 2006;354:1489–96.

    Article  CAS  Google Scholar 

  22. Zagaglia S, Selch C, Nisevic JR, Mei D, Michalak Z, Hernandez-Hernandez L, et al. Neurologic phenotypes associated with COL4A1/2 mutations: expanding the spectrum of disease. Neurology. 2018;91(22):e2078–88.

    Article  CAS  Google Scholar 

  23. Plaisier E, Gribouval O, Alamowitch S, Mougenot B, Prost C, Verpont MC, et al. COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N Engl J Med. 2007;357:2687–95.

    Article  CAS  Google Scholar 

  24. Yoneda Y, Haginoya K, Kato M, et al. Phenotypic spectrum of COL4A1 mutations: porencephaly to schizencephaly. Ann Neurol. 2013;73:48–57.

    Article  CAS  Google Scholar 

  25. Mao M, Alavi MV, Labelle-Dumais C, Gould DB. Type IV collagens and basement membrane diseases: cell biology and pathogenic mechanisms. Curr Top Membr. 2015;76:61–116.

    Article  CAS  Google Scholar 

  26. Ratelade J, Klug NR, Lombardi D, et al. Reducing hypermuscularization of the transitional segment between arterioles and capillaries protects against spontaneous cerebral hemorrhage. Circulation. 2020;141:2078–94.

    Article  CAS  Google Scholar 

  27. Ding XQ, Hagel C, Ringelstein EB, Buchheit S, Zeumer H, Kuhlenbäumer G, et al. MRI features of pontine autosomal dominant microangiopathy and leukoencephalopathy (PADMAL). J Neuroimaging. 2010;20:134–40.

    Article  Google Scholar 

  28. Verdura E, Hervé D, Bergametti F, Jacquet C, Morvan T, Prieto-Morin C, et al. Disruption of a miR-29 binding site leading to COL4A1 upregulation causes PADMAL. Ann Neurol. 2016;80:741–53.

    Article  CAS  Google Scholar 

  29. Renard D, Mine M, Pipiras E, Labauge P, Delahaye A, Benzacken B, Tournier-Lasserve E. Cerebral small-vessel disease associated with COL4A1 and COL4A2 duplications. Neurology. 2014;83(11):1029–31.

    Article  Google Scholar 

  30. Bugiani M, Kevelam SH, Bakels HS, Waisfisz Q, Ceuterick-De Groote C, Niessen HWM, et al. Cathepsin A-related arteriopathy with strokes and leukoencephalopathy (CARASAL). Neurology. 2016;87:1777–86.

    Article  CAS  Google Scholar 

  31. Herve D, Chabriat H, Rigal M, Dalloz M-A, Kawkabani Marchini A, De Lepeleire J, et al. A novel hereditary extensive vascular leukoencephalopathy mapping to chromosome 20q13. Neurology. 2012;79:2283–7.

    Article  Google Scholar 

  32. Lynch DS, Rodrigues Brandão De Paiva A, Zhang WJ, Bugiardini E, Freua F, Tavares Lucato L, et al. Clinical and genetic characterization of leukoencephalopathies in adults. Brain. 2017;140:1204–11.

    Article  Google Scholar 

  33. Richards A, Van Den Maagdenberg AMJM, Jen JC, Kavanagh D, Bertram P, Spitzer D, et al. C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet. 2007;39:1068–70.

    Article  CAS  Google Scholar 

  34. Stam AH, Kothari PH, Shaikh A, Gschwendter A, Jen JC, Hodgkinson S, et al. Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Brain. 2016;139:2909–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Tournier-Lasserve .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tournier-Lasserve, E. (2021). Monogenic Stroke Diseases. In: Fonseca, A.C., Ferro, J.M. (eds) Precision Medicine in Stroke. Springer, Cham. https://doi.org/10.1007/978-3-030-70761-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70761-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70760-6

  • Online ISBN: 978-3-030-70761-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics