Skip to main content

Managing Oxyanions in Aquasystems—Calling Microbes to Action

  • Chapter
  • First Online:
Progress and Prospects in the Management of Oxyanion Polluted Aqua Systems

Abstract

Oxyanions are pollutants that pose health risks to humans, impact organisms negatively and can cause environmental hazard like eutrophication. Their removal from aqua systems is therefore expedient. Although conventional chemical and physical treatments exist and have been well-exploited, the biotreatment option is the way forward as they are eco-friendly, cheaper and less technical. There are available scientific studies on the use of biological agents for the removal of oxyanions from water which ranges from the use of plants through to organisms. However, a only a few of these studies focus on the use of microorganisms for oxyanion removal in water. This chapter, therefore, focuses on the use of microorganisms for the removal of oxyanions from water. It provides a collection of reports on the laboratory and field applications of microorganism removal of oxyanions in water either singly or as a consortium and highlights their successes and weaknesses. This chapter also gives a rare insight into genes responsible for arsenic-resistant bacteria that allows them to effectively accumulate arsenate and arsenite from aqua systems. We present future perspectives that will aid further research in this area of study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goutam SP, Saxena G, Roy D, Yadav AK, Bharagava RN (2020) Green synthesis of nanoparticles and their applications in water and wastewater treatment. In: Bioremediation of industrial waste for environmental safety. Springer, pp 349–379

    Google Scholar 

  2. Santos SC, Ungureanu G, Volf I, Boaventura RA, Botelho CM (2018) Macroalgae biomass as sorbent for metal ions. In: Biomass as renewable raw material to obtain bioproducts of high-tech value. Elsevier, pp 69–112

    Google Scholar 

  3. Gautam RK, Mudhoo A, Lofrano G, Chattopadhyaya MC (2014) Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. J Environ Chem Eng 2:239–259

    Article  Google Scholar 

  4. Taylor BF, Oremland RS (1979, Mar 3) Depletion of adenosine triphosphate in Desulfovibrio by oxyanions of group VI elements. Curr Microbiol (2):101–103

    Google Scholar 

  5. Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204:274–308

    Article  Google Scholar 

  6. Karanasios K, Vasiliadou I, Pavlou S, Vayenas D (2010) Hydrogenotrophic denitrification of potable water: a review. J Hazard Mater 180:20–37

    Article  Google Scholar 

  7. Liao C, Carlson BA, Paulson RF, Prabhu KS (2018) The intricate role of selenium and selenoproteins in erythropoiesis. Free Radical Biol Med 127:165–171

    Article  Google Scholar 

  8. Axley MJ, Stadtman TC (1989) Selenium metabolism and selenium-dependent enzymes in microorganisms. Annu Rev Nutr 9:127–137

    Article  Google Scholar 

  9. Roundhill DM, Koch HF (2002) Methods and techniques for the selective extraction and recovery of oxoanions. Chem Soc Rev 31:60–67

    Article  Google Scholar 

  10. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418

    Article  Google Scholar 

  11. Geering HR, Cary EE, Jones L, Allaway W (1968) Solubility and redox criteria for the possible forms of selenium in soils. Soil Sci Soc Am J 32:35–40

    Article  Google Scholar 

  12. Maier KJ, Knight AW (1993) Comparative acute toxicity and bioconcentration of selenium by the midge Chironomus decorus exposed to selenate, selenite, and seleno-DL-methionine. Arch Environ Contam Toxicol 25:365–370

    Article  Google Scholar 

  13. Stefaniak J, Dutta A, Verbinnen B, Shakya M, Rene ER (2018) Selenium removal from mining and process wastewater: a systematic review of available technologies. J Water Supply Res Technol Aqua 67:903–918

    Article  Google Scholar 

  14. Oremland RS, Hollibaugh JT, Maest AS, Presser TS, Miller LG, Culbertson CW (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl Environ Microbiol 55:2333–2343

    Article  Google Scholar 

  15. Macy JM, Lawson S, DeMoll-Decker H (1993) Bioremediation of selenium oxyanions in San Joaquin drainage water using Thauera selenatis in a biological reactor system. Appl Microbiol Biotechnol 40:588–594

    Article  Google Scholar 

  16. Cantafio AW, Hagen KD, Lewis GE, Bledsoe TL, Nunan KM, Macy JM (1996) Pilot-scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis. Appl Environ Microbiol 62:3298–3303

    Article  Google Scholar 

  17. Oremland RS, Blum JS, Bindi AB, Dowdle PR, Herbel M, Stolz JF (1999) Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria. Appl Environ Microbiol 65:4385–4392

    Article  Google Scholar 

  18. Herbel MJ, Blum JS, Oremland RS, Borglin SE (2003) Reduction of elemental selenium to selenide: experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiol J 20:587–602

    Article  Google Scholar 

  19. Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65:4734–4740

    Article  Google Scholar 

  20. Pearce CI, Pattrick RA, Law N, Charnock JM, Coker VS, Fellowes JW, Oremland RS, Lloyd JR (2009) Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica. Environ Technol 30:1313–1326

    Article  Google Scholar 

  21. Maltman C, Yurkov V (2018) Bioremediation potential of bacteria able to reduce high levels of selenium and tellurium oxyanions. Arch Microbiol 200:1411–1417

    Article  Google Scholar 

  22. Staicu LC, van Hullebusch ED, Lens PN (2017) Industrial selenium pollution: wastewaters and physical–chemical treatment technologies. In: Bioremediation of selenium contaminated wastewater. Springer, pp 103–130

    Google Scholar 

  23. Hunter WJ, Kuykendall LD (2005) Removing selenite from groundwater with an in situ biobarrier: laboratory studies. Curr Microbiol 50:145–150

    Google Scholar 

  24. Luek A, Brock C, Rowan DJ, Rasmussen JB (2014) A simplified anaerobic bioreactor for the treatment of selenium-laden discharges from non-acidic, end-pit lakes. Mine Water Environ 33:295–306

    Article  Google Scholar 

  25. Bakircioglu Y, Bakircioglu D, Akman S (2010) Biosorption of lead by filamentous fungal biomass-loaded TiO2 nanoparticles. J Hazard Mater 178:1015–1020

    Article  Google Scholar 

  26. Fujita M, Ike M, Kashiwa M, Hashimoto R, Soda S (2002) Laboratory‐scale continuous reactor for soluble selenium removal using selenate‐reducing bacterium, Bacillus sp. SF‐1. Biotechnol Bioeng 80:755–761

    Google Scholar 

  27. Tan LC, Papirio S, Luongo V, Nancharaiah YV, Cennamo P, Esposito G, Van Hullebusch ED, Lens PN (2018) Comparative performance of anaerobic attached biofilm and granular sludge reactors for the treatment of model mine drainage wastewater containing selenate, sulfate and nickel. Chem Eng J 345:545–555

    Article  Google Scholar 

  28. Altringer P, Larsen D, Gardner K (1989) Bench scale process development of selenium removal from wastewater using facultative bacteria. In: International symposium on biohydrometallurgy, Jackson Hole, pp 643–657

    Google Scholar 

  29. Pieniz S, Okeke BC, Andreazza R, Brandelli A (2011) Evaluation of selenite bioremoval from liquid culture by Enterococcus species. Microbiol Res 166:176–185

    Article  Google Scholar 

  30. Kuyucak N (1990) Feasibility of biosorbents application. In: Biosorption of heavy metals, vol 4, pp 372–377

    Google Scholar 

  31. Kapoor A, Viraraghavan T (1995) Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53:195–206

    Google Scholar 

  32. Espinosa-Ortiz EJ, Rene ER, van Hullebusch ED, Lens PN (2015) Removal of selenite from wastewater in a Phanerochaete chrysosporium pellet based fungal bioreactor. Int Biodeterior Biodegrad 102:361–369

    Article  Google Scholar 

  33. Gharieb M, Wilkinson S, Gadd G (1995) Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: cellular location of reduced selenium and implications for tolerance. J Ind Microbiol 14:300–311

    Article  Google Scholar 

  34. Marinescu G, Stoicescu AG, Teodorof L (2011) Industrial nutrient medium use for yeast selenium preparation. In: Annals of the University Dunarea de Jos of Galati Fascicle VI—food technology, vol 35

    Google Scholar 

  35. Nettem K, Almusallam AS (2013) Equilibrium, kinetic, and thermodynamic studies on the biosorption of selenium (IV) ions onto Ganoderma lucidum biomass. Sep Sci Technol 48:2293–2301

    Article  Google Scholar 

  36. Leong YK, Chang J-S (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol 303:122886

    Article  Google Scholar 

  37. Tuzen M, Sarı A (2010) Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: equilibrium, thermodynamic and kinetic studies. Chem Eng J 158:200–206

    Article  Google Scholar 

  38. Mane P, Bhosle A, Jangam C, Vishwakarma C (2011) Bioadsorption of selenium by pretreated algal biomass. Adv Appl Sci Res 2:202–207

    Google Scholar 

  39. Johansson CL, Paul NA, de Nys R, Roberts DA (2015) The complexity of biosorption treatments for oxyanions in a multi-element mine effluent. J Environ Manage 151:386–392

    Article  Google Scholar 

  40. Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608

    Article  Google Scholar 

  41. Li F, Guo H, Zhou X, Zhao K, Shen J, Liu F, Wei C (2017) Impact of natural organic matter on arsenic removal by modified granular natural siderite: evidence of ternary complex formation by HPSEC-UV-ICP-MS. Chemosphere 168:777–785

    Article  Google Scholar 

  42. Smith AH, Lopipero PA, Bates MN, Steinmaus CM (2002) Arsenic epidemiology and drinking water standards. American Association for the Advancement of Science

    Google Scholar 

  43. Prasad KS, Ramanathan A, Paul J, Subramanian V, Prasad R (2013) Biosorption of arsenite (As + 3) and arsenate (As + 5) from aqueous solution by Arthrobacter sp. biomass. Environ Technol 34:2701–2708

    Google Scholar 

  44. Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325

    Article  Google Scholar 

  45. Ramírez-Solís A, Mukopadhyay R, Rosen BP, Stemmler TL (2004) Experimental and theoretical characterization of arsenite in water: insights into the coordination environment of AsO. Inorg Chem 43:2954–2959

    Article  Google Scholar 

  46. Teclu D, Tivchev G, Laing M, Wallis M (2008) Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria. Water Res 42:4885–4893

    Article  Google Scholar 

  47. Norman N (1998) Chemistry of arsenic, antimony and bismuth. Blackie Academic and Professional, London, p 403

    Google Scholar 

  48. Hamamura N, Itai T, Liu Y, Reysenbach AL, Damdinsuren N, Inskeep WP (2014) Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia. Environ Microbiol Rep 6:476–482

    Article  Google Scholar 

  49. Murphy T, Guo J (2003) An introduction of arsenic toxicity and its management. In: Aquatic arsenic toxicity and treatment

    Google Scholar 

  50. Bhakta JN, Ali MM (2020) Biosorption of arsenic: an emerging eco-technology of arsenic detoxification in drinking water. In: Arsenic water resources contamination. Springer, pp 207–230

    Google Scholar 

  51. Kostal J, Yang R, Wu CH, Mulchandani A, Chen W (2004) Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol 70:4582–4587

    Article  Google Scholar 

  52. Wang S, Zhao X (2009) On the potential of biological treatment for arsenic contaminated soils and groundwater. J Environ Manage 90:2367–2376

    Article  Google Scholar 

  53. Leiva ED, Rámila CdP, Vargas IT, Escauriaza CR, Bonilla CA, Pizarro GE, Regan JM, Pasten PA (2014) Natural attenuation process via microbial oxidation of arsenic in a high Andean watershed. Sci Total Environ 466:490–502

    Google Scholar 

  54. Yamamura S, Amachi S (2014) Microbiology of inorganic arsenic: from metabolism to bioremediation. J Biosci Bioeng 118:1–9

    Article  Google Scholar 

  55. Johnson DL (1972) Bacterial reduction of arsenate in sea water. Nature 240:44–45

    Article  Google Scholar 

  56. Biswas R, Majhi AK, Sarkar A (2019) The role of arsenate reducing bacteria for their prospective application in arsenic contaminated groundwater aquifer system. Biocatal Agric Biotechnol 20:101218

    Article  Google Scholar 

  57. Sahabi DM, Takeda M, Suzuki I, Koizumi J-I (2009) Removal of Mn2+ from water by “aged” biofilter media: the role of catalytic oxides layers. J Biosci Bioeng 107:151–157

    Article  Google Scholar 

  58. Ike M, Miyazaki T, Yamamoto N, Sei K, Soda S (2008) Removal of arsenic from groundwater by arsenite-oxidizing bacteria. Water Sci Technol 58:1095–1100

    Article  Google Scholar 

  59. Wan J, Klein J, Simon S, Joulian C, Dictor M-C, Deluchat V, Dagot C (2010) AsIII oxidation by Thiomonas arsenivorans in up-flow fixed-bed reactors coupled to As sequestration onto zero-valent iron-coated sand. Water Res 44:5098–5108

    Article  Google Scholar 

  60. Yang L, Li X, Chu Z, Ren Y, Zhang J (2014) Distribution and genetic diversity of the microorganisms in the biofilter for the simultaneous removal of arsenic, iron and manganese from simulated groundwater. Bioresour Technol 156:384–388

    Article  Google Scholar 

  61. Corsini A, Zaccheo P, Muyzer G, Andreoni V, Cavalca L (2014) Arsenic transforming abilities of groundwater bacteria and the combined use of Aliihoeflea sp. strain 2WW and goethite in metalloid removal. J Hazard Mater 269:89–97

    Google Scholar 

  62. Akhter M, Tasleem M, Alam MM, Ali S (2017) In silico approach for bioremediation of arsenic by structure prediction and docking studies of arsenite oxidase from Pseudomonas stutzeri TS44. Int Biodeterior Biodegrad 122:82–91

    Article  Google Scholar 

  63. Manirethan V, Raval K, Balakrishnan RM (2020) Adsorptive removal of trivalent and pentavalent arsenic from aqueous solutions using iron and copper impregnated melanin extracted from the marine bacterium Pseudomonas stutzeri. Environ Pollut 257:113576

    Article  Google Scholar 

  64. Pandey PK, Choubey S, Verma Y, Pandey M, Chandrashekhar K (2009) Biosorptive removal of arsenic from drinking water. Bioresour Technol 100:634–637

    Article  Google Scholar 

  65. Sarı A, Tuzen M (2009) Biosorption of As (III) and As (V) from aqueous solution by macrofungus (Inonotus hispidus) biomass: equilibrium and kinetic studies. J Hazard Mater 164:1372–1378

    Article  Google Scholar 

  66. Aryal M, Ziagova M, Liakopoulou-Kyriakides M (2010) Study on arsenic biosorption using Fe (III)-treated biomass of Staphylococcus xylosus. Chem Eng J 162:178–185

    Article  Google Scholar 

  67. Battaglia-Brunet F, Crouzet C, Burnol A, Coulon S, Morin D, Joulian C (2012) Precipitation of arsenic sulphide from acidic water in a fixed-film bioreactor. Water Res 46:3923–3933

    Article  Google Scholar 

  68. Sun J, Hong Y, Guo J, Yang J, Huang D, Lin Z, Jiang F (2019) Arsenite removal without thioarsenite formation in a sulfidogenic system driven by sulfur reducing bacteria under acidic conditions. Water Res 151:362–370

    Article  Google Scholar 

  69. Florentino AP, Weijma J, Stams AJ, Sánchez-Andrea I (2015) Sulfur reduction in acid rock drainage environments. Environ Sci Technol 49:11746–11755

    Article  Google Scholar 

  70. Zhang L, Zhang Z, Sun R, Liang S, Chen G-H, Jiang F (2018) Self-accelerating sulfur reduction via polysulfide to realize a high-rate sulfidogenic reactor for wastewater treatment. Water Res 130:161–167

    Article  Google Scholar 

  71. Aguilar NC, Faria MC, Pedron T, Batista BL, Mesquita JP, Bomfeti CA, Rodrigues JL (2020) Isolation and characterization of bacteria from a Brazilian gold mining area with a capacity of arsenic bioaccumulation. Chemosphere 240:124871

    Article  Google Scholar 

  72. Escalante G, Campos V, Valenzuela C, Yañez J, Zaror C, Mondaca M (2009) Arsenic resistant bacteria isolated from arsenic contaminated river in the Atacama Desert (Chile). Bull Environ Contam Toxicol 83:657–661

    Article  Google Scholar 

  73. Shakya S, Pradhan B, Smith L, Shrestha J, Tuladhar S (2012) Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal. J Environ Manage 95:S250–S255

    Article  Google Scholar 

  74. Majumder A, Bhattacharyya K, Bhattacharyya S, Kole S (2013) Arsenic-tolerant, arsenite-oxidising bacterial strains in the contaminated soils of West Bengal, India. Sci Total Environ 463:1006–1014

    Article  Google Scholar 

  75. Huang K, Chen C, Zhang J, Tang Z, Shen Q, Rosen BP, Zhao F-J (2016) Efficient arsenic methylation and volatilization mediated by a novel bacterium from an arsenic-contaminated paddy soil. Environ Sci Technol 50:6389–6396

    Article  Google Scholar 

  76. Das S, Barooah M (2018) Characterization of siderophore producing arsenic-resistant Staphylococcus sp. strain TA6 isolated from contaminated groundwater of Jorhat, Assam and its possible role in arsenic geocycle. BMC Microbiol 18:104

    Google Scholar 

  77. Fazi S, Amalfitano S, Casentini B, Davolos D, Pietrangeli B, Crognale S, Lotti F, Rossetti S (2016) Arsenic removal from naturally contaminated waters: a review of methods combining chemical and biological treatments. Rend Lincei 27:51–58

    Article  Google Scholar 

  78. Kim N, Park M, Yun Y-S, Park D (2019) Removal of anionic arsenate by a PEI-coated bacterial biosorbent prepared from fermentation biowaste. Chemosphere 226:67–74

    Article  Google Scholar 

  79. Ahmad A, Heijnen L, de Waal L, Battaglia-Brunet F, Oorthuizen W, Pieterse B, Bhattacharya P, van der Wal A (2020) Mobility and redox transformation of arsenic during treatment of artificially recharged groundwater for drinking water production. Water Res 115826

    Google Scholar 

  80. Amoozegar MA, Ghasemi A, Razavi MR, Naddaf S (2007) Evaluation of hexavalent chromium reduction by chromate-resistant moderately halophile, Nesterenkonia sp. strain MF2. Process Biochem 42:1475–1479

    Google Scholar 

  81. Narayani M, Shetty KV (2013) Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Crit Rev Environ Sci Technol 43:955–1009

    Article  Google Scholar 

  82. Xu C-H, Zhu L-J, Wang X-H, Lin S, Chen Y-M (2014) Fast and highly efficient removal of chromate from aqueous solution using nanoscale zero-valent iron/activated carbon (NZVI/AC). Water Air Soil Pollut 225:1845

    Article  Google Scholar 

  83. Gruber J, Jennette KW (1978, May 30) Metabolism of the carcinogen chromate by rat liver microsomes. Biochem Biophys Res Commun 82(2):700–706

    Google Scholar 

  84. Tzou Y, Chen Y, Wang M (1998) Chromate sorption by acidic and alkaline soils. J Environ Sci Health Part A 33:1607–1630

    Article  Google Scholar 

  85. Losi M, Amrhein C, Frankenberger W Jr (1994) Biodegradation of chromate-contaminated groundwater by reduction and precipitation in surface soils. J Environ Qual 23:1141–1150

    Article  Google Scholar 

  86. Luli G, Talnagi J, Strohl WR, Pfister R (1983) Hexavalent chromium-resistant bacteria isolated from river sediments. Appl Environ Microbiol 46:846

    Article  Google Scholar 

  87. Bopp L, Chakrabarty A, Ehrlich H (1983) Chromate resistance plasmid in Pseudomonas fluorescens. J Bacteriol 155:1105–1109

    Article  Google Scholar 

  88. Horitsu H, Nishida H, Kato H, Tomoyeda M (1978) Isolation of potassium chromate-tolerant bacterium and chromate uptake by the bacterium. Agric Biol Chem 42:2037–2043

    Google Scholar 

  89. Sau G, Chatterjee S, Sinha S, Mukherjee SK (2008) Isolation and characterization of a Cr (VI) reducing Bacillus firmus strain from industrial effluents. Pol J Microbiol 57:327–332

    Google Scholar 

  90. Shakoori A, Tahseen S, Haq R (1999) Chromium-tolerant bacteria isolated from industrial effluents and their use in detoxication of hexavalent chromium. Folia Microbiol 44:50–54

    Article  Google Scholar 

  91. Alvarez AH, Moreno-Sánchez R, Cervantes C (1999) Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol 181:7398–7400

    Article  Google Scholar 

  92. Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  Google Scholar 

  93. Ohtake H, Cervantes C, Silver S (1987) Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. J Bacteriol 169:3853–3856

    Article  Google Scholar 

  94. Wang Y-T, Xiao C (1995) Factors affecting hexavalent chromium reduction in pure cultures of bacteria. Water Res 29:2467–2474

    Article  Google Scholar 

  95. Cervantes C, Silver S (1992) Plasmid chromate resistance and chromate reduction. Plasmid 27:65–71

    Article  Google Scholar 

  96. Thatoi H, Das S, Mishra J, Rath BP, Das N (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manage 146:383–399

    Article  Google Scholar 

  97. Wang C, Chen J, Hu W-J, Liu J-Y, Zheng H-L, Zhao F (2014) Comparative proteomics reveal the impact of OmcA/MtrC deletion on Shewanella oneidensis MR-1 in response to hexavalent chromium exposure. Appl Microbiol Biotechnol 98:9735–9747

    Article  Google Scholar 

  98. Han J-C, Chen G-J, Qin L-P, Mu Y (2017) Metal respiratory pathway-independent Cr isotope fractionation during Cr (VI) reduction by Shewanella oneidensis MR-1. Environ Sci Technol Lett 4:500–504

    Article  Google Scholar 

  99. Yu X, Jiang Y, Huang H, Shi J, Wu K, Zhang P, Lv J, Li H, He H, Liu P (2016) Simultaneous aerobic denitrification and Cr (VI) reduction by Pseudomonas brassicacearum LZ-4 in wastewater. Bioresour Technol 221:121–129

    Article  Google Scholar 

  100. Baldiris R, Acosta-Tapia N, Montes A, Hernández J, Vivas-Reyes R (2018) Reduction of hexavalent chromium and detection of chromate reductase (ChrR) in Stenotrophomonas maltophilia. Molecules 23:406

    Article  Google Scholar 

  101. Polti MA, Amoroso MJ, Abate CM (2007) Chromium (VI) resistance and removal by actinomycete strains isolated from sediments. Chemosphere 67:660–667

    Article  Google Scholar 

  102. Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:0051–0054

    Article  Google Scholar 

  103. Kalsoom A, Batool R, Jamil N (2020) An integrated approach for safe removal of chromium (VI) by Brevibacterium sp. Pak J Sci 72:18

    Google Scholar 

  104. Sugiyama M, Tsuzuki K, Hidaka T, Ogura R, Yamamoto M (1991) Reduction of chromium (VI) in Chinese hamster V-79 cells. Biol Trace Elem Res 30:1–8

    Article  Google Scholar 

  105. Cohen RR, Ozawa T (2013) Microbial sulfate reduction and biogeochemistry of arsenic and chromium oxyanions in anaerobic bioreactors. Water Air Soil Pollut 224:1732

    Article  Google Scholar 

  106. Schroeder DC, Lee GF (1975) Potential transformations of chromium in natural waters. Water Air Soil Pollut 4:355–365

    Article  Google Scholar 

  107. Ibrahim AS, El-Tayeb MA, Elbadawi YB, Al-Salamah AA (2011) Bioreduction of Cr (VI) by potent novel chromate resistant alkaliphilic Bacillus sp. strain KSUCr5 isolated from hypersaline Soda lakes. Afr J Biotechnol 10:7207–7218

    Google Scholar 

  108. Sathishkumar K, Murugan K, Benelli G, Higuchi A, Rajasekar A (2017) Bioreduction of hexavalent chromium by Pseudomonas stutzeri L1 and Acinetobacter baumannii L2. Ann Microbiol 67:91–98

    Article  Google Scholar 

  109. Jin R, Liu Y, Liu G, Tian T, Qiao S, Zhou J (2017) Characterization of product and potential mechanism of Cr (VI) reduction by anaerobic activated sludge in a sequencing batch reactor. Sci Rep 7:1–12

    Google Scholar 

  110. Ma L, Xu J, Chen N, Li M, Feng C (2019) Microbial reduction fate of chromium (Cr) in aqueous solution by mixed bacterial consortium. Ecotoxicol Environ Saf 170:763–770

    Article  Google Scholar 

  111. Pattanapipitpaisal P, Brown N, Macaskie L (2001) Chromate reduction by Microbacterium liquefaciens immobilised in polyvinyl alcohol. Biotechnol Lett 23:61–65

    Article  Google Scholar 

  112. Humphries A, Nott K, Hall L, Macaskie L (2005) Reduction of Cr (VI) by immobilized cells of Desulfovibrio vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776. Biotechnol Bioeng 90:589–596

    Google Scholar 

  113. Tucker M, Barton L, Thomson B (1998) Reduction of Cr, Mo, Se and U by Desulfovibrio desulfuricans immobilized in polyacrylamide gels. J Ind Microbiol Biotechnol 20:13–19

    Article  Google Scholar 

  114. Poopal AC, Laxman RS (2008) Hexavalent chromate reduction by immobilized Streptomyces griseus. Biotechnol Lett 30:1005–1010

    Article  Google Scholar 

  115. Xu L, Luo M, Li W, Wei X, Xie K, Liu L, Jiang C, Liu H (2011) Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions. J Hazard Mater 185:1169–1176

    Article  Google Scholar 

  116. Farag S, Zaki S (2010) Identification of bacterial strains from tannery effluent and reduction of hexavalent chromium. J Environ Biol 31:877

    Google Scholar 

  117. Gao J, Zhang X, Yu J, Lei Y, Zhao S, Jiang Y, Xu Z, Cheng J (2020) Cr (VI) removal performance and the characteristics of microbial communities influenced by the core-shell Maifanite/ZnAl-layered double hydroxides (LDHs) substrates for chromium-containing surface water. Biochem Eng J 107625

    Google Scholar 

  118. Hussain S, Aziz HA, Isa MH, Ahmad A, Van Leeuwen J, Zou L, Beecham S, Umar M (2011) Orthophosphate removal from domestic wastewater using limestone and granular activated carbon. Desalination 271:265–272

    Article  Google Scholar 

  119. Loganathan P, Vigneswaran S, Kandasamy J, Bolan NS (2014) Removal and recovery of phosphate from water using sorption. Crit Rev Environ Sci Technol 44:847–907

    Google Scholar 

  120. Yeoman S, Stephenson T, Lester JN, Perry R (1988, Jan 1) The removal of phosphorus during wastewater treatment: a review. Environm Pollut 49(3):183–233

    Google Scholar 

  121. Awual MR (2019) Efficient phosphate removal from water for controlling eutrophication using novel composite adsorbent. J Clean Prod 228:1311–1319

    Article  Google Scholar 

  122. Long F, Gong J-L, Zeng G-M, Chen L, Wang X-Y, Deng J-H, Niu Q-Y, Zhang H-Y, Zhang X-R (2011) Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide. Chem Eng J 171:448–455

    Article  Google Scholar 

  123. USEPA (2009) Valuing the protection of ecological systems and services: a report of the EPA science advisory board, EPA-SAB-09-012

    Google Scholar 

  124. Weiner ER (2012) Applications of environmental aquatic chemistry: a practical guide. CRC Press

    Google Scholar 

  125. Glick RE, Schlagnhaufer CD, Arteca RN, Pell E (1995) Ozone-induced ethylene emission accelerates the loss of ribulose-1, 5-bisphosphate carboxylase/oxygenase and nuclear-encoded mRNAs in senescing potato leaves. Plant Physiol 109:891–898

    Article  Google Scholar 

  126. He ZH, Chillingworth RK, Brune M, Corrie JE, Trentham DR, Webb MR, Ferenczi MA (1997) ATPase kinetics on activation of rabbit and frog permeabilized isometric muscle fibres: a real time phosphate assay. J Physiol 501:125–148

    Article  Google Scholar 

  127. Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  128. Wani PA, Zaidi A, Khan AA, Khan MS (2005) Effect of phorate on phosphate solubilization and indole acetic acid releasing potentials of rhizospheric microorganisms. Ann Plant Prot Sci 13:139–144

    Google Scholar 

  129. Chen Y, Rekha P, Arun A, Shen F, Lai W-A, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  130. Kumar V, Behl RK, Narula N (2001) Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions. Microbiol Res 156:87–93

    Article  Google Scholar 

  131. De Freitas J, Banerjee M, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Google Scholar 

  132. Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    Article  Google Scholar 

  133. Vazquez P, Holguin G, Puente M, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  Google Scholar 

  134. Bass JIF, Reece-Hoyes JS, Walhout AJ (2016) Zymolyase-treatment and polymerase chain reaction amplification from genomic and plasmid templates from yeast. Cold Spring Harb Protoc

    Google Scholar 

  135. Nilsson T, Rova M, Bäcklund AS (2013) Microbial metabolism of oxochlorates: a bioenergetic perspective. Biochim Biophys Acta Bioenerg 1827:189–197

    Article  Google Scholar 

  136. Kounaves SP, Stroble ST, Anderson RM, Moore Q, Catling DC, Douglas S, McKay CP, Ming DW, Smith PH, Tamppari LK (2010) Discovery of natural perchlorate in the Antarctic Dry Valleys and its global implications. Environ Sci Technol 44:2360–2364

    Article  Google Scholar 

  137. Mastrocicco M, Di Giuseppe D, Vincenzi F, Colombani N, Castaldelli G (2017) Chlorate origin and fate in shallow groundwater below agricultural landscapes. Environ Pollut 231:1453–1462

    Article  Google Scholar 

  138. Knight BA, Shields BM, He X, Pearce EN, Braverman LE, Sturley R, Vaidya B (2018) Effect of perchlorate and thiocyanate exposure on thyroid function of pregnant women from South-West England: a cohort study. Thyroid Res 11:9

    Article  Google Scholar 

  139. Logan BE (2001) Peer reviewed: assessing the outlook for perchlorate remediation. ACS Publications

    Google Scholar 

  140. Matsubara T, Fujishima K, Saltikov CW, Nakamura S, Rothschild L (2017) Earth analogues for past and future life on Mars: isolation of perchlorate resistant halophiles from Big Soda Lake. Int J Astrobiol 16:218–228

    Article  Google Scholar 

  141. Okeke BC, Giblin T, Frankenberger WT Jr (2002) Reduction of perchlorate and nitrate by salt tolerant bacteria. Environ Pollut 118:357–363

    Article  Google Scholar 

  142. Niziński P, Błażewicz A, Kończyk J, Michalski R (2020) Perchlorate–properties, toxicity and human health effects: an updated review. Rev Environ Health 1

    Google Scholar 

  143. Murray C, Bolger P (2014) Environmental contaminants: perchlorate

    Google Scholar 

  144. Xu J, Logan BE (2003) Measurement of chlorite dismutase activities in perchlorate respiring bacteria. J Microbiol Methods 54:239–247

    Article  Google Scholar 

  145. Smith PN, Severt SA, Jackson WA, Anderson TA (2006) Thyroid function and reproductive success in rodents exposed to perchlorate via food and water. Environ Toxicol Chem Int J 25:1050–1059

    Article  Google Scholar 

  146. Coates JD, Achenbach LA (2004) Microbial perchlorate reduction: rocket-fuelled metabolism. Nat Rev Microbiol 2:569–580

    Article  Google Scholar 

  147. Carlström CI, Loutey DE, Wang O, Engelbrektson A, Clark I, Lucas LN, Somasekhar PY, Coates JD (2015) Phenotypic and genotypic description of Sedimenticola selenatireducens strain CUZ, a marine (per) chlorate-respiring gammaproteobacterium, and its close relative the chlorate-respiring Sedimenticola strain NSS. Appl Environ Microbiol 81:2717–2726

    Google Scholar 

  148. Balk M, Mehboob F, van Gelder AH, Rijpstra WIC, Damsté JSS, Stams AJ (2010) (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage. Appl Microbiol Biotechnol Bioeng 88:595–603

    Google Scholar 

  149. Ricardo AR, Carvalho G, Velizarov S, Crespo JG, Reis MA (2012) Kinetics of nitrate and perchlorate removal and biofilm stratification in an ion exchange membrane bioreactor. Water Res 46:4556–4568

    Article  Google Scholar 

  150. Liebensteiner MG, Pinkse MW, Schaap PJ, Stams AJ, Lomans BP (2013) Archaeal (per) chlorate reduction at high temperature: an interplay of biotic and abiotic reactions. Sci Total Environ 340:85–87

    Google Scholar 

  151. Waller AS, Cox EE, Edwards EA (2004) Perchlorate-reducing microorganisms isolated from contaminated sites. Environ Microbiol Rep 6:517–527

    Article  Google Scholar 

  152. Acevedo-Barrios R, Bertel-Sevilla A, Alonso-Molina J, Olivero-Verbel J (2019, Feb 17) Perchlorate-reducing bacteria from hypersaline soils of the Colombian caribbean. Int J Microbiol 2019

    Google Scholar 

  153. Xiao Y, Roberts DJ (2013) Kinetics analysis of a salt-tolerant perchlorate-reducing bacterium: effects of sodium, magnesium, and nitrate. Environ Sci Technol 47:8666–8673

    Article  Google Scholar 

  154. Youngblut MD, Tsai C-L, Clark IC, Carlson HK, Maglaqui AP, Gau-Pan PS, Redford SA, Wong A, Tainer JA, Coates JD (2016) Perchlorate reductase is distinguished by active site aromatic gate residues. J Biol Chem 291:9190–9202

    Article  Google Scholar 

  155. Coleman ML, Ader M, Chaudhuri S, Coates JD (2003) Microbial isotopic fractionation of perchlorate chlorine. Appl Environ Microbiol 69:4997–5000

    Google Scholar 

  156. Brundrett M, Horita J, Anderson T, Pardue J, Reible D, Jackson WA (2015) The use of chlorate, nitrate, and perchlorate to promote crude oil mineralization in salt marsh sediments. Environ Sci Pollut Res 22:15377–15385

    Article  Google Scholar 

  157. Coates JD, Bruce RA, Patrick J, Achenbach LA (1999) Hydrocarbon bioremediative potential of (per) chlorate-reducing bacteria. Bioremediat J 3:323–334

    Article  Google Scholar 

  158. Coates JD, Michaelidou U, Bruce RA, O’Connor SM, Crespi JN, Achenbach LA (1999) Ubiquity and diversity of dissimilatory (per) chlorate-reducing bacteria. Appl Environ Microbiol Rep 65:5234–5241

    Article  Google Scholar 

  159. Giblin T, Frankenberger W (2001) Perchlorate and nitrate reductase activity in the perchlorate-respiring bacterium perclace. Microbiol Res 156:311–315

    Article  Google Scholar 

  160. Zu Y, Zhao Y, Xu K, Tong Y, Zhao F (2016) Preparation and comparison of catalytic performance for nano MgFe2O4, GO-loaded MgFe2O4 and GO-coated MgFe2O4 nanocomposites. Ceram Int 42:18844–18850

    Article  Google Scholar 

  161. Hord NG, Tang Y, Bryan NS (2009) Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr 90:1–10

    Article  Google Scholar 

  162. Espejo-Herrera N, Gracia-Lavedan E, Pollan M, Aragonés N, Boldo E, Perez-Gomez B, Altzibar JM, Amiano P, Zabala AJ, Ardanaz E (2016) Ingested nitrate and breast cancer in the Spanish Multicase-Control Study on Cancer (MCC-Spain). Environ Health Perspect 124:1042–1049

    Article  Google Scholar 

  163. Kuai L, Verstraete W (1998) Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system. Appl Environ Microbiol Rep 64:4500–4506

    Article  Google Scholar 

  164. Li Y, Go YK, Ooka H, He D, Jin F, Kim SH, Nakamura R (2020) Enzyme mimetic active intermediates for nitrate reduction in neutral aqueous media. Angew Chem Int Ed 59:9744–9750

    Article  Google Scholar 

  165. Sliekers AO, Derwort N, Gomez JC, Strous M, Kuenen J, Jetten M (2002) Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res 36:2475–2482

    Article  Google Scholar 

  166. Van Dongen U, Jetten MS, Van Loosdrecht MJ (2001) The SHARON®-Anammox® process for treatment of ammonium rich wastewater. Water Sci Technol 44:153–160

    Article  Google Scholar 

  167. Lu L, Guo X, Zhao J (2017) A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms. Int J Eng Sci 119:265–277

    Article  Google Scholar 

  168. Neissi A, Rafiee G, Farahmand H, Rahimi S, Mijakovic I (2020) Cold-resistant heterotrophic ammonium and nitrite-removing bacteria improve aquaculture conditions of rainbow trout (Oncorhynchus mykiss). Microbial Ecol 1–12

    Google Scholar 

  169. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570

    Article  Google Scholar 

  170. Xie T, Xia Y, Zeng Y, Li X, Zhang Y (2017) Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: over-compensation strategy. Bioresour Technol 233:247–255

    Article  Google Scholar 

  171. Nie W-B, Xie G-J, Ding J, Peng L, Lu Y, Tan X, Yue H, Liu B-F, Xing D-F, Meng J (2020) Operation strategies of n-DAMO and Anammox process based on microbial interactions for high rate nitrogen removal from landfill leachate. Environ Int 139:105596

    Article  Google Scholar 

  172. Wang Y, Zhou W, Jia R, Yu Y, Zhang B (2020) Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew Chem Int Ed 132:5388–5392

    Article  Google Scholar 

  173. Gao J, Jiang B, Ni C, Qi Y, Bi X (2020) Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: mechanism exploration from both experimental and DFT studies. Chem Eng J 382:123034

    Article  Google Scholar 

  174. Navada S, Sebastianpillai M, Kolarevic J, Fossmark RO, Tveten A-K, Gaumet F, Mikkelsen Ø, Vadstein O (2020) A salty start: brackish water start-up as a microbial management strategy for nitrifying bioreactors with variable salinity. Sci Total Environ 139934

    Google Scholar 

  175. Pinkernell U, Von Gunten U (2001) Bromate minimization during ozonation: mechanistic considerations. Environ Sci Technol 35:2525–2531

    Article  Google Scholar 

  176. Winid B (2013) Bromine as a potential threat to the aquatic environment in areas of mining operations. Gospodarka Surowcami Mineralnymi-Mineral Resources Management

    Google Scholar 

  177. von Gunten U, Salhi E (2003) Bromate in drinking water a problem in Switzerland? Ozone Sci Eng 25:159–166

    Google Scholar 

  178. Pinkernell U, von Gunten U (2001) Bromate minimization during ozonation: mechanistic considerations. Environ Sci Technol 35(12):2525–2531

    Google Scholar 

  179. Xu P, Janex M-L, Savoye P, Cockx A, Lazarova V (2002) Wastewater disinfection by ozone: main parameters for process design. Water Res 36:1043–1055

    Article  Google Scholar 

  180. Plewa MJ, Wagner ED, Richardson SD, Thruston AD, Woo Y-T, McKague AB (2004) Chemical and biological characterization of newly discovered iodoacid drinking water disinfection byproducts. Environ Sci Technol 38:4713–4722

    Article  Google Scholar 

  181. Glaze WH, Weinberg HS, Cavanagh JE (1993) Evaluating the formation of brominated DBPs during ozonation. J Am Water Works Assoc 85:96–103

    Article  Google Scholar 

  182. Fang J-Y, Shang C (2012) Bromate formation from bromide oxidation by the UV/persulfate process. Environ Sci Technol 46:8976–8983

    Article  Google Scholar 

  183. Liu Y, Yang Y, Pang S, Zhang L, Ma J, Luo C, Guan C, Jiang J (2018) Mechanistic insight into suppression of bromate formation by dissolved organic matters in sulfate radical-based advanced oxidation processes. Chem Eng J 333:200–205

    Article  Google Scholar 

  184. Butler R, Godley A, Lake R, Lytton L, Cartmell E (2005) Reduction of bromate in groundwater with an ex situ suspended growth bioreactor. Water Sci Technol 52:265–273

    Article  Google Scholar 

  185. Assunção A, Martins M, Silva G, Lucas H, Coelho MR, Costa MC (2011) Bromate removal by anaerobic bacterial community: mechanism and phylogenetic characterization. J Hazard Mater 197:237–243

    Article  Google Scholar 

  186. Davidson AN, Chee-Sanford J, Lai HYM, Ho C-H, Klenzendorf JB, Kirisits MJ (2011) Characterization of bromate-reducing bacterial isolates and their potential for drinking water treatment. Water Res 45:6051–6062

    Article  Google Scholar 

  187. Hijnen W, Voogt R, Veenendaal H, Van der Jagt H, Van Der Kooij D (1995) Bromate reduction by denitrifying bacteria. Appl Environ Microbiol 61:239–244

    Article  Google Scholar 

  188. Hijnen W, Jong R, Van der Kooij D (1999) Bromate removal in a denitrifying bioreactor used in water treatment. Water Res 33:1049–1053

    Article  Google Scholar 

  189. Zhong Y, Yang Q, Fu G, Xu Y, Cheng Y, Chen C, Xiang R, Wen T, Li X, Zeng G (2018) Denitrifying microbial community with the ability to bromate reduction in a rotating biofilm-electrode reactor. J Hazard Mater 342:150–157

    Article  Google Scholar 

  190. Lai C-Y, Lv P-L, Dong Q-Y, Yeo SL, Rittmann BE, Zhao H-P (2018) Bromate and nitrate bioreduction coupled with poly-β-hydroxybutyrate production in a methane-based membrane biofilm reactor. Environ Sci Technol 52:7024–7031

    Article  Google Scholar 

  191. Kirisits MJ, Snoeyink VL, Inan H, Chee-Sanford JC, Raskin L, Brown JC (2001) Water quality factors affecting bromate reduction in biologically active carbon filters. Water Res 35:891–900

    Article  Google Scholar 

  192. Liu J, Yu J, Li D, Zhang Y, Yang M (2012) Reduction of bromate in a biological activated carbon filter under high bulk dissolved oxygen conditions and characterization of bromate-reducing isolates. Biochem Eng J 65:44–50

    Article  Google Scholar 

  193. Kirisits MJ, Snoeyink VL, Chee-Sanford JC, Daugherty BJ, Brown JC, Raskin L (2002) Effect of operating conditions on bromate removal efficiency in BAC filters. J Am Water Works Assoc 94:182–193

    Article  Google Scholar 

  194. Tamai N, Ishii T, Sato Y, Fujiya H, Muramatsu Y, Okabe N, Amachi S (2016) Bromate reduction by Rhodococcus sp. Br-6 in the presence of multiple redox mediators. Environ Sci Technol 50:10527–10534

    Google Scholar 

  195. Demirel S (2017) Denitrification performance and microbial community dynamics in a denitrification reactor as revealed by high-throughput sequencing. Water Sci Technol Water Supply 17:940–946

    Article  Google Scholar 

  196. Manna J, Shilpa N, Bandarapu AK, Rana RK (2019 Feb 22) Oxyanion-binding in a bioinspired nanoparticle-assembled hybrid microsphere structure: effective removal of arsenate/chromate from water. ACS Applied Nano Materials 2(3):1525–1532

    Google Scholar 

  197. Thomas Sims J, Pierzynski GM (2005) Chemistry of phosphorus in soils. In: Chemical processes in soils, vol 8, pp 151–192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aemere Ogunlaja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ogunlaja, A., Peter, G., Sowo, F.A. (2021). Managing Oxyanions in Aquasystems—Calling Microbes to Action. In: Oladoja, N.A., Unuabonah, E.I. (eds) Progress and Prospects in the Management of Oxyanion Polluted Aqua Systems. Environmental Contamination Remediation and Management. Springer, Cham. https://doi.org/10.1007/978-3-030-70757-6_9

Download citation

Publish with us

Policies and ethics