Skip to main content

Ceramic Additive for Aerospace

  • Chapter
  • First Online:
Women in 3D Printing

Part of the book series: Women in Engineering and Science ((WES))

Abstract

The cruise altitudes and speed of flight will be higher than ever before for next-generation aerospace applications. While this will enable superior efficiency and reach, especially for military aerospace vehicles, it comes at the cost of harsher environments experienced by the component materials. Ceramic materials are of interest for these applications since they can withstand higher temperatures and harsher environments than many traditional metal or polymer aerospace components. Beyond increased temperature capability, they also offer increased erosion resistance, higher stiffness, lower density, and, in some cases, multi-functional properties. Additive manufacturing (AM) of ceramics offers a more agile manufacturing method to create the complex-shaped components needed for next-generation component designs. Due to the complexities that come with forming dense ceramic materials, the field of AM of ceramics is still in initial stages of adaptation. This chapter will briefly introduce background on the variety of AM routes that exist for forming ceramic materials along with some advantages and disadvantages of each. A more detailed account will be given to some recent advances in AM of ceramics and ceramic matrix composites using the technique of direct ink writing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 30 October 2021

    The author inadvertently missed to update the release of the chapter authorized by the government in the proof. The information has been updated as "Distribution A: Cleared for Public Release, #AFRL-2021-0114" in the Acknowledgements section.

References

  1. Padture, N.P.: Advanced structural ceramics in aerospace propulsion. Nat. Mater. 15, 804–809 (2016). https://doi.org/10.1038/nmat4687

    Article  Google Scholar 

  2. Allen, A.J., Levin, I., Witt, S.E.: Materials research & measurement needs for ceramics additive manufacturing. J. Am. Ceram. Soc. 103, 6055–6069 (2020). https://doi.org/10.1111/jace.17369

    Article  Google Scholar 

  3. Yang, L., Miyanaji, H.: Ceramic additive manufacturing: a review of current status and challenges. Solid Freeform Fabr., 652–679 (2017)

    Google Scholar 

  4. Chen, Z., Li, Z., Li, J., et al.: 3D printing of ceramics: a review. J. Eur. Ceram. Soc. 39, 661–687 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.013

    Article  Google Scholar 

  5. Wang, J.-C., Dommati, H., Hsieh, S.-J.: Review of additive manufacturing methods for high-performance ceramic materials. Int. J. Adv. Manuf. Technol. 103, 2627–2647 (2019). https://doi.org/10.1007/s00170-019-03669-3

    Article  Google Scholar 

  6. Zocca, A., Colombo, P., Gomes, C.M., Günster, J.: Additive manufacturing of ceramics: issues, potentialities, and opportunities. J. Am. Ceram. Soc. 98, 1983–2001 (2015). https://doi.org/10.1111/jace.13700

    Article  Google Scholar 

  7. Costa, E.C.E., Duarte, J.P., Bártolo, P.: A review of additive manufacturing for ceramic production. Rapid Prototyp. J. 23, 954–963 (2017). https://doi.org/10.1108/RPJ-09-2015-0128

    Article  Google Scholar 

  8. Zou, Y., Li, C.-H., Hu, L., et al.: Effects of short carbon fiber on the macro-properties, mechanical performance and microstructure of SiSiC composite fabricated by selective laser sintering. Ceram. Int. 46, 12102–12110 (2020). https://doi.org/10.1016/j.ceramint.2020.01.255

    Article  Google Scholar 

  9. Meyers, S., De Leersnijder, L., Vleugels, J., Kruth, J.-P.: Increasing the silicon carbide content in laser sintered reaction bonded silicon carbide. Ceram. Trans. 201, 207–215 (2018)

    Article  Google Scholar 

  10. Yi, X., Tan, Z.-J., Yu, W.-J., et al.: Three dimensional printing of carbon/carbon composites by selective laser sintering. Carbon N Y. 96, 603–607 (2016). https://doi.org/10.1016/j.carbon.2015.09.110

    Article  Google Scholar 

  11. King, D., Middendorf, J., Cissel, K., et al.: Selective laser melting for the preparation of an ultra-high temperature ceramic coating. Ceram. Int. 45, 2466–2473 (2019). https://doi.org/10.1016/j.ceramint.2018.10.173

    Article  Google Scholar 

  12. Costakis, W.J., Rueschhoff, L.M., Diaz-Cano, A.I., et al.: Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions. J. Eur. Ceram. Soc. 36, 3249–3256 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.06.002

    Article  Google Scholar 

  13. Rueschhoff, L., Costakis, W., Michie, M., et al.: Additive manufacturing of dense ceramic parts via direct ink writing of aqueous alumina suspensions. Int. J. Appl. Ceram. Technol. 13, 821–830 (2016)

    Article  Google Scholar 

  14. Kemp, J.W., Hmeidat, N.S., Compton, B.G.: Boron nitride-reinforced polysilazane-derived ceramic composites via direct-ink writing. J. Am. Ceram. Soc. 103, 4043–4050 (2020). https://doi.org/10.1111/jace.17084

    Article  Google Scholar 

  15. Zocca, A., Franchin, G., Elsayed, H., et al.: Direct ink writing of a preceramic polymer and fillers to produce hardystonite (Ca2ZnSi2O7) bioceramic scaffolds. J. Am. Ceram. Soc. 99, 1960–1967 (2016). https://doi.org/10.1111/jace.14213

    Article  Google Scholar 

  16. Franchin, G., Wahl, L., Colombo, P.: Direct ink writing of ceramic matrix composite structures. J. Am. Ceram. Soc. 100, 4397–4401 (2017). https://doi.org/10.1111/jace.15045

    Article  Google Scholar 

  17. Franchin, G., Maden, H., Wahl, L., et al.: Optimization and characterization of preceramic inks for direct ink writing of ceramic matrix composite structures. Materials (Basel). 11, 515 (2018). https://doi.org/10.3390/ma11040515

    Article  Google Scholar 

  18. Eckel, Z.C., Zhou, C., Martin, J.H., et al.: Additive manufacturing of polymer-derived ceramics. Science (80– ). 351, 58–62 (2016). https://doi.org/10.1126/science.aad2688

    Article  Google Scholar 

  19. Zanchetta, E., Cattaldo, M., Franchin, G., et al.: Stereolithography of SiOC ceramic microcomponents. Adv. Mater. 28, 370–376 (2016). https://doi.org/10.1002/adma.201503470

    Article  Google Scholar 

  20. Wozniak, M., de Hazan, Y., Graule, T., Kata, D.: Rheology of UV curable colloidal silica dispersions for rapid prototyping applications. J. Eur. Ceram. Soc. 31, 2221–2229 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.05.004

    Article  Google Scholar 

  21. Halloran, J.W.: Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization. Annu. Rev. Mater. Res. 46, 19–40 (2016). https://doi.org/10.1146/annurev-matsci-070115-031841

    Article  Google Scholar 

  22. Lewis, J.A.: Direct-write assembly of ceramics from colloidal inks. Curr. Opin. Solid State Mater. Sci. 6, 245–250 (2002). https://doi.org/10.1016/S1359-0286(02)00031-1

    Article  Google Scholar 

  23. Kemp, J.W., Diaz, A., Malek, E., et al.: Processing of ultra-high temperature ceramic matrix composites via direct-ink writing. In Review (2020)

    Google Scholar 

  24. Zhao, Z., Zhou, G., Yang, Z., et al.: Direct ink writing of continuous SiO2 fiber reinforced wave-transparent ceramics. J. Adv. Ceram. 9, 403–412 (2020). https://doi.org/10.1007/s40145-020-0380-y

    Article  Google Scholar 

  25. Lorenz, M., Dietemann, B., Wahl, L., et al.: Influence of platelet content on the fabrication of colloidal gels for robocasting: experimental analysis and numerical simulation. J. Eur. Ceram. Soc. 40, 811–825 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.10.044

    Article  Google Scholar 

  26. Muth, J.T., Dixon, P.G., Woish, L., et al.: Architected cellular ceramics with tailored stiffness via direct foam writing. Proc. Natl. Acad. Sci. 114, 1832–1837 (2017). https://doi.org/10.1073/pnas.1616769114

    Article  Google Scholar 

  27. Lewis, J.A., Smay, J.E., Stuecker, J., Cesarano III, J.: Direct ink writing of three-dimensional ceramic structures. J. Am. Ceram. Soc. 89, 3599–3609 (2006). https://doi.org/10.1111/j.1551-2916.2006.01382.x

    Article  Google Scholar 

  28. Colombo, P., Mera, G., Riedel, R., et al.: Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93, 1805–1837 (2010). https://doi.org/10.1111/j.1551-2916.2010.03876.x

    Article  Google Scholar 

  29. Baldwin, L.A., Rueschhoff, L.M., Deneault, J.R., et al.: Synthesis of a two-component carbosilane system for the advanced manufacturing of polymer-derived ceramics. Chem. Mater. 30, 7527–7534 (2018). https://doi.org/10.1021/acs.chemmater.8b02541

    Article  Google Scholar 

  30. Youngblood, J.P., Trice, R.W., Wiesner, V.L., et al.: Injection molding of aqueous suspensions of high-temperature ceramics. US Patent Application 15/192,376, filed 6/2016, published 5/2017, 2015

    Google Scholar 

  31. Wiesner, V.L., Youngblood, J.P., Trice, R.W.: Room-temperature injection molding of aqueous alumina-polyvinylpyrrolidone suspensions. J. Eur. Ceram. Soc. 34, 453–463 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.08.017

    Article  Google Scholar 

  32. Acosta, M., Wiesner, V.L., Martinez, C.J., et al.: Effect of polyvinylpyrrolidone additions on the rheology of aqueous, highly loaded alumina suspensions. J. Am. Ceram. Soc. 96, 1372–1382 (2013). https://doi.org/10.1111/jace.12277

    Article  Google Scholar 

  33. Riley, F.L.: Silicon nitride and related materials. J. Am. Ceram. Soc. 83, 245–265 (2000)

    Article  Google Scholar 

  34. Mei, H., Yan, Y., Feng, L., et al.: First printing of continuous fibers into ceramics. J. Am. Ceram. Soc. 102, 3244–3255 (2019). https://doi.org/10.1111/jace.16234

    Article  Google Scholar 

  35. Rueschhoff, L.M., Carney, C.M., Apostolov, Z.D., Cinibulk, M.K.: Processing of fiber-reinforced ultra-high temperature ceramic composites: a review. Int. J. Ceram. Eng. Sci. 2, 22–37 (2020). https://doi.org/10.1002/ces2.10033

    Article  Google Scholar 

  36. Sciti, D., Guicciardi, S., Silvestroni, L.: SiC chopped fibers reinforced ZrB2: effect of the sintering aid. Scr. Mater. 64, 769–772 (2011). https://doi.org/10.1016/j.scriptamat.2010.12.044

    Article  Google Scholar 

  37. Guicciardi, S., Silvestroni, L., Nygren, M., Sciti, D.: Microstructure and toughening mechanisms in spark plasma-sintered ZrB 2 ceramics reinforced by SiC whiskers or SiC-chopped fibers. J. Am. Ceram. Soc. 93, 2384–2391 (2010). https://doi.org/10.1111/j.1551-2916.2010.03730.x

    Article  Google Scholar 

  38. Fang, C., Hu, P., Dong, S., et al.: Design and optimization of the coating thickness on chopped carbon fibers and sintering temperature for ZrB2-SiC-Cf composites prepared by hot pressing. J. Eur. Ceram. Soc. 39, 2805–2811 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.03.038

    Article  Google Scholar 

  39. Wiesner, V., Acosta, M., Rueschhoff, L., et al.: Horizontal Dip-Spin Casting of aqueous alumina-polyvinylpyrrolidone suspensions with chopped fiber. Int. J. Appl. Ceram. Technol. 14, 1077–1087 (2017). https://doi.org/10.1111/ijac.12714

    Article  Google Scholar 

  40. Silvestroni, L., Capiani, C., Dalle Fabbriche, D., Melandri, C.: Novel light and tough ZrB2-based functionally graded ceramics. Compos. Part B Eng. 99, 321–329 (2016). https://doi.org/10.1016/j.compositesb.2016.06.001

    Article  Google Scholar 

  41. Compton, B.G., Lewis, J.A.: 3D-printing of lightweight cellular composites. Adv. Mater. 26, 5930–5935 (2014). https://doi.org/10.1002/adma.201401804

    Article  Google Scholar 

  42. Van Wie, D.M., Drewry Jr., D.G., King, D.E., Hudson, C.M.: The hypersonic environment: required operating conditions and design challenges. J. Mater. Sci. 39, 5915–5924 (2004). https://doi.org/10.1023/B:JMSC.0000041688.68135.8b

    Article  Google Scholar 

  43. Silvestroni, L., Sciti, D., Melandri, C., Guicciardi, S.: Toughened ZrB2-based ceramics through SiC whisker or SiC chopped fiber additions. J. Eur. Ceram. Soc. 30, 2155–2164 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.11.012

    Article  Google Scholar 

  44. Fahrenholtz, W.G., Hilmas, G.E.: Ultra-high temperature ceramics: materials for extreme environments. Scr. Mater. 129, 94–99 (2017). https://doi.org/10.1016/j.scriptamat.2016.10.018

    Article  Google Scholar 

  45. Alfano, D., Gardi, R., Scatteia, L., Del Vecchio, A.: UHTC-based hot structures: characterization, design, and on-ground/in-flight testing. In: Fahrenholtz, W.G., Wuchina, E., Lee, W.E., Zhou, Y. (eds.) Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, pp. 416–436. Wiley, New York (2014)

    Google Scholar 

  46. Sciti, D., Pienti, L., Fabbriche, D.D., et al.: Combined effect of SiC chopped fibers and SiC whiskers on the toughening of ZrB2. Ceram. Int. 40, 4819–4826 (2014). https://doi.org/10.1016/j.ceramint.2013.09.031

    Article  Google Scholar 

  47. Sha, J.J., Li, J., Wang, S.H., et al.: Improved microstructure and fracture properties of short carbon fiber-toughened ZrB2-based UHTC composites via colloidal process. Int. J. Refract. Met. Hard Mater. 60, 68–74 (2016). https://doi.org/10.1016/j.ijrmhm.2016.07.010

    Article  Google Scholar 

  48. Leslie, C.J., Boakye, E.E., Keller, K.A., Cinibulk, M.K.: Development of continuous SiC fiber reinforced HfB2-SiC composites for aerospace applications. In: Processing and Properties of Advanced Ceramcis and Composites V: Ceramic Transactions, pp. 3–12. John Wiley & Sons, Inc., Hoboken (2013)

    Google Scholar 

  49. Leslie, C.J., Kim, H.J., Chen, H., et al.: Polymer-derived ceramics for development of ultra-high temperature composites. In: Innovative Processing and Manufacturing of Advanced Ceramics and Composites II, pp. 33–46. John Wiley & Sons, Inc., Hoboken (2014)

    Google Scholar 

  50. Silvestroni, L., Sciti, D., Hilmas, G.E., et al.: Effect of a weak fiber interface coating in ZrB2 reinforced with long SiC fibers. Mater. Des. 88, 610–618 (2015). https://doi.org/10.1016/j.matdes.2015.08.105

    Article  Google Scholar 

  51. Yang, F., Zhang, X., Han, J., Du, S.: Characterization of hot-pressed short carbon fiber reinforced ZrB2–SiC ultra-high temperature ceramic composites. J. Alloys Compd. 472, 395–399 (2009). https://doi.org/10.1016/j.jallcom.2008.04.092

    Article  Google Scholar 

  52. Carney, C.M.: Ultra-high temperature ceramic-based composites. In: Zweben, C.H., Beaumont, W.R. (eds.) Comprehensive Composite Materials II, vol. 5, pp. 281–292. Elsevier, Amsterdam (2017)

    Google Scholar 

  53. Corral, E.L., Walker, L.S.: Improved ablation resistance of C-C composites using zirconium diboride and boron carbide. J. Eur. Ceram. Soc. 30, 2357–2364 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.02.025

    Article  Google Scholar 

  54. Tang, S., Hu, C.: Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review. J. Mater. Sci. Technol. 33, 117–130 (2017). https://doi.org/10.1016/j.jmst.2016.08.004

    Article  Google Scholar 

  55. Key, T.S., Wilks, G.B., Parthasarathy, T.A., et al.: Process modeling of the low-temperature evolution and yield of polycarbosilanes for ceramic matrix composites. J. Am. Ceram. Soc. 101, 2809–2818 (2018). https://doi.org/10.1111/jace.15463

    Article  Google Scholar 

  56. Croom, B., Abbott, A., Kemp, J.W., et al.: Mechanics of nozzle clogging during direct ink writing of fiber-reinforced composites. Addit. Manuf. 37, 101701 (2021)

    Google Scholar 

  57. Folgar, F., Tucker, C.L.: Orientation behavior of fibers in concentrated suspensions. J. Reinf. Plast. Compos. 3, 98–119 (1984). https://doi.org/10.1177/073168448400300201

    Article  Google Scholar 

  58. Apostolov, Z.D., Heckman, E.P., Key, T.S., Cinibulk, M.K.: Effects of low-temperature treatment on the properties of commercial preceramic polymers. J. Eur. Ceram. Soc. 40, 2887–2895 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.02.030

    Article  Google Scholar 

  59. Pelz, J.S., Ku, N., Shoulders, W.T., Meyers, M.A., Vargas-Gonzalez, L.R.: Multi-material additive manufacturing of functionally graded carbide ceramics via active, in-line mixing, Addit. Manuf. (2020) 101647. https://doi.org/10.1016/j.addma.2020.101647

Download references

Acknowledgements

The work reported here was a collaborative effort, and as such acknowledgement is due to others that contributed to the experimental work and/or critical discussions outside of those already called out in the text. This includes researchers at Purdue (Dr. Matthew Michie and Dr. Andres Diaz-Cano), Georgia Institute of Technology (Abel Diaz and Prof. Surya Kalidindi), and Johns Hopkins Applied Physics Laboratory (Dr. Brendan Croom). The views expressed here are those of the authors and do not reflect the official policy or position of the US Air Force, Department of Defense, or the US Government. Distribution A: Cleared for Public Release, #AFRL-2021-0114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Rueschhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rueschhoff, L. (2021). Ceramic Additive for Aerospace. In: DelVecchio, S.M. (eds) Women in 3D Printing. Women in Engineering and Science. Springer, Cham. https://doi.org/10.1007/978-3-030-70736-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70736-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70735-4

  • Online ISBN: 978-3-030-70736-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics