Skip to main content

Blockchain as a Complementary Technology for the Internet of Things: A Survey

  • Chapter
  • First Online:
Internet of Things

Abstract

Blockchain is a new technology resulting from a continuous research on consensus mechanisms to ensure the integrity of a distributed shared replica. It represents a data structure built on a hash function and distributed among the various participants according to previously agreed consensus rules. This work aims to carry out a comprehensive survey of the consensus mechanism that forms the heart of blockchain technology and its suitability for the Internet of Things. It begins by explaining blockchain technology from a historical and technical point of view before approaching the different philosophical approaches within the consensus mechanism, their disadvantage, and their suitability for the IoT sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD international conference on management of data (pp. 207–216).

    Chapter  Google Scholar 

  2. Ali, A., Latif, S., Qadir, J., Kanhere, S., Singh, J., Crowcroft, J., et al. (2019). Blockchain and the future of the internet: A comprehensive review. arXiv preprint arXiv:1904.00733.

    Google Scholar 

  3. Amir, Y., Coan, B., Kirsch, J., & Lane, J. (2010). Prime: Byzantine replication under attack. IEEE Transactions on Dependable and Secure Computing, 8(4), 564–577.

    Article  Google Scholar 

  4. Back, A., et al. (2002). Hashcash-a denial of service counter-measure computer science.

    Google Scholar 

  5. Bag, S., Ruj, S., & Sakurai, K. (2016). Bitcoin block withholding attack: Analysis and mitigation. IEEE Transactions on Information Forensics and Security, 12(8), 1967–1978.

    Article  Google Scholar 

  6. Baldominos, A., & Saez, Y. (2019). Coin. Ai: A proof-of-useful-work scheme for blockchain-based distributed deep learning. Entropy, 21(8), 723.

    Article  Google Scholar 

  7. Ball, M., Rosen, A., Sabin, M., & Vasudevan, P. N. (2017). Proofs of useful work. IACR Cryptology ePrint Archive, 2017, 203.

    Google Scholar 

  8. Bayer, D., Haber, S., & Stornetta, W. S. (1993). Improving the efficiency and reliability of digital time-stamping. In Sequences II (pp. 329–334). Berlin: Springer.

    Chapter  Google Scholar 

  9. Belotti, M., Kirati, S., & Secci, S. (2018). Bitcoin pool-hopping detection. In 2018 IEEE 4th international forum on research and Technology for Society and Industry (RTSI) (pp. 1–6). IEEE.

    Google Scholar 

  10. Bentov, I., Lee, C., Mizrahi, A., & Rosenfeld, M. (2014). Proof of activity: Extending bitcoin’s proof of work via proof of stake [extended abstract] y. ACM SIGMETRICS Performance Evaluation Review, 42(3), 34–37.

    Article  Google Scholar 

  11. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A., & Felten, E. W. (2015). Sok: Research perspectives and challenges for bitcoin and cryptocurrencies. In 2015 IEEE symposium on security and privacy (pp. 104–121). IEEE.

    Chapter  Google Scholar 

  12. Bu, G., Gürcan, Ö., & Potop-Butucaru, M. (2019). G-iota: Fair and confidence aware tangle. In IEEE INFOCOM 2019-IEEE conference on computer Communications workshops (INFOCOM WKSHPS) (pp. 644–649). IEEE.

    Chapter  Google Scholar 

  13. Buccafurri, F., Lax, G., Nicolazzo, S., & Nocera, A. (2017). Overcoming limits of blockchain for iot applications. In Proceedings of the 12th international conference on availability, reliability and security (pp. 1–6).

    Google Scholar 

  14. Buterin, V. (2013). A next generation smart contract & decentralized application platform. White Paper, 3(37) Ethereum Foundation.

    Google Scholar 

  15. Buterin, V., & Griffith, V. (2017). Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437.

    Google Scholar 

  16. Castro, M., Liskov, B., et al. (1999). Practical byzantine fault tolerance. OSDI, 99, 173–186.

    Google Scholar 

  17. Charapko, A., Ailijiang, A., & Demirbas, M. (2018). Bridging paxos and blockchain consensus. In 2018 IEEE international conference on internet of things (iThings) and IEEE Green computing and communications (GreenCom) and IEEE cyber, physical and social computing (CPSCom) and IEEE smart data (SmartData) (pp. 1545–1552). IEEE.

    Chapter  Google Scholar 

  18. Chatterjee, K., Goharshady, A. K., Ibsen-Jensen, R., & Velner, Y. (2018). Ergodic mean-payoff games for the analysis of attacks in crypto-currencies. arXiv preprint arXiv:1806.03108.

    Google Scholar 

  19. Chen, R.-Y. (2018). A traceability chain algorithm for artificial neural networks using t–s fuzzy cognitive maps in blockchain. Future Generation Computer Systems, 80, 198–210.

    Article  Google Scholar 

  20. Chen, J., Duan, K., Zhang, R., Zeng, L., & Wang, W. (2018). An ai based super nodes selection algorithm in blockchain networks. arXiv preprint arXiv:1808.00216.

    Google Scholar 

  21. Chiang, T. F., Chen, S. Y., & Lai, C. F. (2018). A tangle-based high performance architecture for large scale iot solutions. In 2018 1st international cognitive cities conference (IC3) (pp. 12–15). IEEE.

    Chapter  Google Scholar 

  22. Chow, S. S., Lai, Z., Liu, C., Lo, E., & Zhao, Y. (2018). Sharding blockchain. In 2018 IEEE international conference on internet of things (iThings) and IEEE Green computing and communications (GreenCom) and IEEE cyber, physical and social computing (CPSCom) and IEEE smart data (SmartData) (pp. 1665–1665). IEEE.

    Chapter  Google Scholar 

  23. De Roode, G., Ullah, I., & Havinga, P. J. (2018). How to break iota heart by replaying? In 2018 IEEE Globecom workshops (GC Wkshps) (pp. 1–7). IEEE.

    Google Scholar 

  24. Deirmentzoglou, E., Papakyriakopoulos, G., & Patsakis, C. (2019). A survey on long-range attacks for proof of stake protocols. IEEE Access, 7, 28712–28725.

    Article  Google Scholar 

  25. Dillenberger, D., Novotny, P., Zhang, Q., Jayachandran, P., Gupta, H., Hans, S., Verma, D., Chakraborty, S., Thomas, J., Walli, M., et al. (2019). Blockchain analytics and artificial intelligence. IBM Journal of Research and Development, 63(2/3), 5–1.

    Article  Google Scholar 

  26. Dubois, S., Masuzawa, T., & Tixeuil, S. (2011). Bounding the impact of unbounded attacks in stabilization. IEEE Transactions on Parallel and Distributed Systems, 23(3), 460–466.

    Article  Google Scholar 

  27. El Kafhali, S., Chahir, C., Hanini, M., & Salah, K. (2019). Architecture to manage internet of things data using blockchain and fog computing. In Proceedings of the 4th international conference on big data and internet of things (pp. 1–8).

    Google Scholar 

  28. Eyal, I. (2015). The miner’s dilemma. In 2015 IEEE symposium on security and privacy (pp. 89–103). IEEE.

    Chapter  Google Scholar 

  29. Eyal, I., & Sirer, E. G. (2014). Majority is not enough: Bitcoin mining is vulnerable. In International conference on financial cryptography and data security (pp. 436–454). Cham: Springer.

    Google Scholar 

  30. Fakhri, D., & Mutijarsa, K. (2018). Secure iot communication using blockchain technology. In 2018 international symposium on electronics and smart devices (ISESD) (pp. 1–6). IEEE.

    Google Scholar 

  31. Florea, B. C. (2018). Blockchain and internet of things data provider for smart applications. In 2018 7th Mediterranean conference on embedded computing (MECO) (pp. 1–4). IEEE.

    Google Scholar 

  32. Frederick, M., & Jaiswal, C. (2018). Bid: Blockchaining for iot devices. In 2018 9th IEEE annual ubiquitous computing, Electronics & Mobile Communication Conference (UEMCON) (pp. 806–811). IEEE.

    Chapter  Google Scholar 

  33. Gaži, P., Kiayias, A., & Russell, A. (2018). Stake-bleeding attacks on proof-of- stake blockchains. In 2018 Crypto Valley conference on Blockchain technology (CVCBT) (pp. 85–92). IEEE.

    Chapter  Google Scholar 

  34. Georghiades, Y., Flolid, S., & Vishwanath, S. (2019). Hashcore: Proof-of-work functions for general purpose processors. In 2019 IEEE 39th international conference on distributed computing systems (ICDCS) (pp. 1951–1959). IEEE.

    Chapter  Google Scholar 

  35. Goodman, L. (2014, August 3). Tezos: A self-amending crypto-ledger position paper.

    Google Scholar 

  36. Gramoli, V. (2017). From blockchain consensus back to byzantine consensus. Future Generation Computer Systems, 107, 760–769.

    Article  Google Scholar 

  37. Haber, S., & Stornetta, W. (1991). How to time-stamp a digital document. In Advances in cryptology-CRYPTO’ 90. CRYPTO 1990. Lecture notes in computer science (Vol. 537). Berlin, Heidelberg: Springer.

    Google Scholar 

  38. Hazari, S. S., & Mahmoud, Q. H. (2019). A parallel proof of work to improve transaction speed and scalability in blockchain systems. In 2019 IEEE 9th annual computing and communication workshop and conference (CCWC) (pp. 0916–0921). IEEE.

    Chapter  Google Scholar 

  39. Heilman, E., Narula, N., Tanzer, G., Lovejoy, J., Colavita, M., Virza, M., & Dryja, T. (2019). Cryptanalysis of curl-p and other attacks on the iota cryptocurrency. IACR Cryptology ePrint Archive, 2019, 344.

    Google Scholar 

  40. Houy, N. (2014). It will cost you nothing to “kill” a proof-of-stake crypto-currency. Economics Bulletin, 34(2), 1038–1044.

    Google Scholar 

  41. Jalalzai, M. M., Busch, C., & Richard, G. G. (2019). Proteus: A scalable bft consensus protocol for blockchains. In 2019 IEEE international conference on Blockchain (Blockchain) (pp. 308–313). IEEE.

    Chapter  Google Scholar 

  42. Jiang, Y., & Lian, Z. (2019). High performance and scalable byzantine fault tolerance. In 2019 IEEE 3rd information technology, networking, electronic and automation control conference (ITNEC) (pp. 1195–1202). IEEE.

    Chapter  Google Scholar 

  43. Jiang, Y., Wang, C., Huang, Y., Long, S., & Huo, Y. (2018). A cross-chain solution to integration of iot tangle for data access management. In 2018 IEEE International conference on internet of things (iThings) and IEEE Green computing and communications (GreenCom) and IEEE cyber, physical and social computing (CPSCom) and IEEE smart data (SmartData) (pp. 1035–1041). IEEE.

    Chapter  Google Scholar 

  44. Kang, J., Xiong, Z., Niyato, D., Ye, D., Kim, D. I., & Zhao, J. (2019). Toward secure blockchain-enabled internet of vehicles: Optimizing consensus management using reputation and contract theory. IEEE Transactions on Vehicular Technology, 68(3), 2906–2920.

    Article  Google Scholar 

  45. King, S., & Nadal, S. (2012, August 19). PPcoin: Peer-to-peer crypto-currency with proof-of- stake. Self-Published Paper.

    Google Scholar 

  46. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., & Wong, E. (2007). Zyzzyva: Speculative byzantine fault tolerance. ACM SIGOPS Operating Systems Review, 41(6), 45–58.

    Article  Google Scholar 

  47. Król, M., Sonnino, A., Al-Bassam, M., Tasiopoulos, A., & Psaras, I. (2019). Proof- of-prestige: A useful work reward system for unverifiable tasks. In 2019 IEEE international conference on Blockchain and Cryptocurrency (ICBC) (pp. 293–301). IEEE.

    Chapter  Google Scholar 

  48. Kroll, J. A., Davey, I. C., & Felten, E. W. (2013). The economics of bitcoin mining, or bitcoin in the presence of adversaries. Proceedings of WEIS, 2013, 11.

    Google Scholar 

  49. Lamport, L. (1998). The part-time parliament. ACM transactions on computer systems. ACM Transactions on Computer Systems, 16(2), 133.

    Article  Google Scholar 

  50. Lamport, L. (2011). Byzantizing paxos by refinement. In International symposium on distributed computing (pp. 211–224). Cham: Springer.

    Chapter  Google Scholar 

  51. Lamport, L. (2019). Time, clocks, and the ordering of events in a distributed system. In Concurrency: The works of Leslie Lamport (pp. 179–196).

    Google Scholar 

  52. Lamport, L., Shostak, R., & Pease, M. (1982). The byzantine generals problem acm transactions on progamming languages and systems. ACM Transactions on Programming Languages and Systems, 4(3), 382–401.

    Article  Google Scholar 

  53. Liao, K., & Katz, J. (2017). Incentivizing blockchain forks via whale transactions. In International conference on financial cryptography and data security (pp. 264–279). Springer.

    Chapter  Google Scholar 

  54. Liu, Z., Luong, N. C., Wang, W., Niyato, D., Wang, P., Liang, Y.-C., & Kim, D. I. (2019). A survey on applications of game theory in blockchain. arXiv preprint arXiv:1902.10865.

    Google Scholar 

  55. Malkhi, D., Nayak, K., & Ren, L. (2019). Flexible byzantine fault tolerance. In Proceedings of the 2019 ACM SIGSAC conference on computer and communications security (pp. 1041–1053).

    Chapter  Google Scholar 

  56. Mendki, P. (2019). Blockchain enabled iot edge computing. In Proceedings of the 2019 international conference on blockchain technology (pp. 66–69).

    Chapter  Google Scholar 

  57. Merkle, R. C. (1989). A certified digital signature. In Conference on the theory and application of cryptology (pp. 218–238). Amsterdam: Springer.

    Google Scholar 

  58. Nakahara, R., & Inaba, H. (2018). Proposal of fair proof-of-work system based on rating of user’s computing power. In 2018 IEEE 7th global conference on consumer electronics (GCCE) (pp. 746–748). IEEE.

    Chapter  Google Scholar 

  59. Nakamoto, S., et al. (2008). A peer-to-peer electronic cash system. Bitcoin. https://bitcoin.org/bitcoin.pdf.

  60. Ongaro, D., & Ousterhout, J. (2014). In search of an understandable consensus algorithm (pp. 305–319).

    Google Scholar 

  61. Pass, R., & Shi, E. (2017). Hybrid consensus: Efficient consensus in the permission- less model. In 31st international symposium on distributed computing (DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

    Google Scholar 

  62. Popov, S. (2016). The tangle. cit. on p. 131.

    Google Scholar 

  63. Puthal, D., & Mohanty, S. P. (2018). Proof of authentication: Iot-friendly blockchains. IEEE Potentials, 38(1), 26–29.

    Article  Google Scholar 

  64. Rabin, M. O. (1983). Randomized byzantine generals. In 24th annual symposium on foundations of computer science (sfcs 1983) (pp. 403–409). IEEE.

    Chapter  Google Scholar 

  65. Rong, Y., Zhang, J., Bian, J., & Wu, W. (2019). Erbft: Efficient and robust byzantine fault tolerance. In 2019 IEEE 21st international conference on high performance computing and communications; IEEE 17th international conference on Smart City; IEEE 5th international conference on data science and systems (HPCC/SmartCity/DSS) (pp. 265–272). IEEE.

    Chapter  Google Scholar 

  66. Rosenfeld, M. (2011). Analysis of bitcoin pooled mining reward systems. arXiv preprint arXiv:1112.4980.

    Google Scholar 

  67. Sasson, E. B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., & Virza, M. (2014). Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE symposium on security and privacy (pp. 459–474). IEEE.

    Chapter  Google Scholar 

  68. Sayeed, S., & Marco-Gisbert, H. (2019). Assessing blockchain consensus and security mechanisms against the 51% attack. Applied Sciences, 9(9), 1788.

    Article  Google Scholar 

  69. Shabandri, B., & Maheshwari, P. (2019). Enhancing iot security and privacy using distributed ledgers with iota and the tangle. In 2019 6th international conference on signal processing and integrated networks (SPIN) (pp. 1069–1075). IEEE.

    Chapter  Google Scholar 

  70. Singh, M., Singh, A., & Kim, S. (2018). Blockchain: A game changer for securing iot data. In 2018 IEEE 4th world forum on internet of things (WF-IoT) (pp. 51–55). IEEE.

    Chapter  Google Scholar 

  71. Sobti, R., & Geetha, G. (2012). Cryptographic hash functions: A review. International Journal of Computer Science Issues (IJCSI), 9(2), 461.

    Google Scholar 

  72. Sompolinsky, Y., & Zohar, A. (2015). Secure high-rate transaction processing in bitcoin. In International conference on financial cryptography and data security (pp. 507–527). Amsterdam: Springer.

    Chapter  Google Scholar 

  73. Szabo, N. (1997). Formalizing and securing relationships on public networks. First Monday, 2(9).

    Google Scholar 

  74. Tracey, D., & Sreenan, C. (2019). How to see through the fog? Using peer to peer (p2p) for the internet of things. In 2019 IEEE 5th world forum on internet of things (WF-IoT) (pp. 47–52). IEEE.

    Chapter  Google Scholar 

  75. Vasin, P. (2014). Blackcoin’s proof-of-stake protocol v2 (Vol. 71). https://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf.

  76. Viriyasitavat, W., & Hoonsopon, D. (2019). Blockchain characteristics and consensus in modern business processes. Journal of Industrial Information Integration, 13, 32–39.

    Article  Google Scholar 

  77. Weking, J., Mandalenakis, M., Hein, A., Hermes, S., Böhm, M., & Krcmar, H. (2020). The impact of blockchain technology on business models–a taxonomy and archetypal patterns. Electronic Markets, 30, 285–305.

    Article  Google Scholar 

  78. Werner, S. M., Pritz, P. J., Zamyatin, A., & Knottenbelt, W. J. (2019). Uncle traps: Harvesting rewards in a queue-based ethereum mining pool. In Proceedings of the 12th EAI international conference on performance evaluation methodologies and tools (pp. 127–134).

    Chapter  Google Scholar 

  79. Yu, Y., & Prasanna, V. K. (2002). Power-aware resource allocation for independent tasks in heterogeneous real-time systems. In Proceedings of the ninth international conference on parallel and distributed systems, 2002 (pp. 341–348). IEEE.

    Google Scholar 

  80. Zamani, M., Movahedi, M., & Raykova, M. (2018). Rapidchain: Scaling blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC conference on computer and communications security (pp. 931–948).

    Chapter  Google Scholar 

  81. Zhou, D. H. (2019). hhohho/Learning-Blockchain-In-Java-Edition-2 learn blockchain. https://github.com/hhohho/Learning-Blockchain-In-Java-Edition-2. Blockchain platform.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ikbal Nacer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nacer, M.I., Prakoonwit, S., Alarab, I. (2021). Blockchain as a Complementary Technology for the Internet of Things: A Survey. In: García Márquez, F.P., Lev, B. (eds) Internet of Things. International Series in Operations Research & Management Science, vol 305. Springer, Cham. https://doi.org/10.1007/978-3-030-70478-0_1

Download citation

Publish with us

Policies and ethics