Skip to main content

Abstract

A magnetometer is an instrument to measure the magnitude and direction of a magnetic field. The most commonly used magnetometric technique to characterize magnetic materials is vibrating sample magnetometry (VSM). VSMs can measure the magnetic properties of magnetically soft (low coercivity) and hard (high coercivity) materials in many forms: solids, powders, single crystals, thin films, or liquids. They can be used to perform measurements from low to high magnetic fields employing electromagnets, Halbach rotating permanent magnet arrays, or high-field superconducting magnets. They can be used to perform measurements from very low to very high temperatures with integrated cryostats or furnaces, respectively. And, they possess a dynamic range extending from 10−8 emu (10−11 Am2) to above 103 emu (1 Am2), enabling them to measure materials that are both weakly magnetic (ultrathin films, nanoscale structures, etc.) and strongly magnetic (permanent magnets). In this chapter, we will discuss the VSM measurement technique and its implementation in an electromagnet. We will also discuss relevant extensions of the technique that provide variable temperature capability, a vector VSM for magnetic anisotropy studies, and implementation of data acquisition algorithms for first-order reversal curve (FORC) measurements for characterizing magnetic interactions and coercivity distributions in magnetic materials. We will present typical measurement results over a range of experimental conditions for various materials to demonstrate the VSM capability for magnetic materials characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.K. Dumas, T. Hogan, Recent advances in SQUID magnetometry, in Magnetic Measurement Techniques for Materials Characterization. Springer Nature (2021)

    Google Scholar 

  2. B.C. Dodrill, H.S. Reichard, Alternating gradient magnetometry, in Magnetic Measurement Techniques for Materials Characterization. Springer Nature (2021)

    Google Scholar 

  3. B.L. Morris, A. Wold, Faraday balance for measuring magnetic susceptibility. Rev. Sci. Instrum. 39, 1968 (1937)

    Google Scholar 

  4. A. Sella, Gouy’s Tube (Royal Society of Chemistry, 2010)

    Google Scholar 

  5. L. Rondin, J.P. Tetienne, T. Hingant, J.F. Roch, P. Maletinsky, V. Jacques, Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014)

    Article  CAS  Google Scholar 

  6. Lake Shore Cryotronics, USA, www.lakeshore.com

  7. Microsense, USA, www.microsense.net

  8. Quantum Design, USA, www.qdusa.com

  9. Cryogenic Limited, UK, www.cryogenic.co.uk

  10. I.D. Mayergoyz, Mathematical Models of Hysteresis and their Applications, 2nd edn. (Academic Press, 2003)

    Google Scholar 

  11. S. Foner, Versatile and Sensitive Vibrating Sample Magnetometer. Rev. Sci. Instrum. 30, 548 (1959)

    Article  Google Scholar 

  12. US Patent # 2,946,848

    Google Scholar 

  13. A. Zieba, S. Foner, Detection coil, sensitivity function, and geometry effects for vibrating sample magnetometer. Rev. Sci. Instrum. 53, 1344 (1982)

    Article  Google Scholar 

  14. National Institute of Standards & Technology (NIST) standard reference materials (SRM) 772a (Ni) and 2853 (YIG)

    Google Scholar 

  15. J. Lindemuth, J. Krause, B. Dodrill, Finite sample size effects on the calibration of vibrating sample magnetometer. IEEE Trans. Magn. 37, 4 (2001)

    Article  Google Scholar 

  16. J. Mallinson, Magnetometry coils and reciprocity. J. Appl. Phys. 37, 2514 (1966)

    Article  Google Scholar 

  17. A. Niazi, P. Poddar, A.K. Rastogi, A precision, low-cost vibrating sample magnetometer. Curr. Sci. 79, 1 (2000)

    Google Scholar 

  18. R.M. El-Alaily, M.K. El-Nimr, S.A. Saafan, M.M. Kamel, T.M. Meaz, S.T. Assar, Construction and calibration of a low-cost and fully automated vibrating sample magnetometer. J. Magn. Magn. Mater. 386, 25 (2015)

    Article  CAS  Google Scholar 

  19. D. Jordan, D. Chavez, D. Laura, L.M. Hilario, E. Moenteblanco, A. Gutarra, L. Felix, Detection of magnetic moment in thin films with a home-made vibrating sample magnetometer. J. Magn. Magn. Mater. 456, 56 (2018)

    Article  CAS  Google Scholar 

  20. V. Dominguez, A. Quesada, J.C. Mainuez, L. Moreno, M. Lere, J. Spottorno, F. Giacomone, J.F. Ferandez, A. Hernando, M.A. Garcia, A simple vibrating sample magnetometer for macroscopic samples. Rev. Sci. Instrum. 89, 034707 (2018)

    Article  Google Scholar 

  21. V.I. Nizhankovskii, L.B. Lugansky, Vibrating sample magnetometer with a step motor. Meas. Sci. Technol., 1533 (2006)

    Google Scholar 

  22. J.P.C. Bernards, G.J.P. van Engelen, H.A.J. Cramer, An improved detection coil systems for a biaxial vibrating sample magnetometer. J. Magn. Magn. Mater. 123, 141 (1993)

    Article  Google Scholar 

  23. E.O. Samel, T. Bolhuis, J.C. Lodder, An alternative approach to vector vibrating sample magnetometer detection coil setup. Rev. Sci. Instrum. 69, 9 (1998)

    Google Scholar 

  24. B.C. Dodrill, Model 8600 Vector Vibrating Sample Magnetometer, Lake Shore Cryotronics Application Note (2020)

    Google Scholar 

  25. S.U. Jen, J.Y. Lee, Method of easy axis determination of uniaxial magnetic films by vector vibrating sample magnetometer. J. Magn. Magn. Mater. 271, 237 (2004)

    Article  CAS  Google Scholar 

  26. P. Stamenov, J.M.D. Coey, Vector vibrating sample magnetometer with a permanent magnet flux source. J. Appl. Phys. 99, 08D912 (2006)

    Article  Google Scholar 

  27. C.R. Pike, A.P. Roberts, K.L. Verosub, Characterizing interactions in fine magnetic particle systems using first order reversal curves. J. Appl. Phys. 85, 6660 (1999)

    Article  CAS  Google Scholar 

  28. A.P. Roberts, C.R. Pike, K.L. Verosub, First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples. J. Geophys. Res. 105, 461 (2000)

    Google Scholar 

  29. A. Rotaru, J. Lim, D. Lenormand, A. Diaconu, J. Wiley, P. Postolache, A. Stancu, L. Spinu, Interactions and reversal field memory in complex magnetic nanowire arrays. Phys. Rev. B 84(13) (2011) 134431

    Google Scholar 

  30. O. Trusca, D. Cimpoesu, J. Lim, X. Zhang, J. Wiley, A. Diaconu, I. Dumitru, A. Stancu, L. Spinu, Interaction effects in Ni nanowire arrays. IEEE Trans. Magn. 44(11), 2730 (2008)

    Article  CAS  Google Scholar 

  31. A. Arefpour, M. Almasi-Kashi, A. Ramazani, E. Golafshan, The investigation of perpendicular anisotropy of ternary alloy magnetic nanowire arrays using first order reversal curves. J. Alloys Comp. 583, 340 (2014)

    Article  CAS  Google Scholar 

  32. B. C. Dodrill, L. Spinu, First-Order-Reversal-Curve Analysis of Nanoscale Magnetic Materials, Technical Proceedings of the 2014 NSTI Nanotechnology Conference and Exposition, CRC Press (2014)

    Google Scholar 

  33. A. Sharma, M. DiVito, D. Shore, A. Block, K. Pollock, P. Solheid, J. Feinberg, J. Modiano, C. Lam, A. Hubel, B. Stadler, Alignment of collagen matrices using magnetic nanowires and magnetic barcode readout using first order reversal curves (FORC). J. Magn. Magn. Mater. 459, 176 (2018)

    Article  CAS  Google Scholar 

  34. F. Beron, L. Carignan, D. Menard, A. Yelon, in Extracting Individual Properties from Global Behavior: First Order Reversal Curve Method Applied to Magnetic Nanowire Arrays, Electrodeposited Nanowires and their Applications, ed. by N. Lupu, (INTECH, Croatia, 2010), p. 228

    Google Scholar 

  35. R. Dumas, C. Li, I. Roshchin, I. Schuller, K. Liu, Magnetic fingerprints of sub-100 nm Fe Nanodots. Phys. Rev. B 75, 134405 (2007)

    Article  Google Scholar 

  36. D. Gilbert, G. Zimanyi, R. Dumas, M. Winklhofer, A. Gomez, N. Eibagi, J. Vincent, K. Liu, Quantitative decoding of interactions in tunable nanomagnet arrays. Sci. Rep. 4, 4204 (2014)

    Article  Google Scholar 

  37. J. Graffe, M. Weigand, C. Stahl, N. Trager, M. Kopp, G. Schutz, E. Goering, Combined first order reversal curve and X-ray microscopy investigation of magnetization reversal mechanisms in hexagonal Antidot arrays. Phys. Rev. B 93, 014406 (2016)

    Article  Google Scholar 

  38. B. Valcu, D. Gilbert, K. Liu, Fingerprinting Inhomegeneities in recording media using first order reversal curves. IEEE Trans. Magn. 47, 2988 (2011)

    Article  Google Scholar 

  39. A. Stancu, E. Macsim, Interaction field distribution in longitudinal and perpendicular structured particulate media. IEEE Trans. Magn. 42(10), 3162 (2006)

    Article  Google Scholar 

  40. M. Winklhofer, R.K. Dumas, K. Liu, Identifying reversible and irreversible magnetization changes in prototype patterned media using first- and second-order reversal curves. J. Appl. Phys. 103, 07C518 (2008)

    Article  Google Scholar 

  41. R. Dumas, C. Li, L. Roshchin, I. Schuller, K. Liu, Deconvoluting reversal modes in exchange biased nanodots. Phys. Rev. B 144410 (2012)

    Google Scholar 

  42. R. Gallardo, S. Khanai, J. Vargas, L. Spinu, C. Ross, C. Garcia, Angular dependent FORC and FMR of exchange biased NiFe multilayer films. J. Phys. D. Appl. Phys. 50, 075002 (2017)

    Article  Google Scholar 

  43. N. Siadou, M. Androutsopoulos, I. Panagiotopoulos, L. Stoleriu, A. Stancu, T. Bakas, V. Alexandrakis, Magnetization reversal in [Ni/Pt](6)/Pt(x)/[Co/Pt](6) multilayers. J. Magn. Magn. Mater. 323(12), 2011 (1671)

    Google Scholar 

  44. T. Schrefl, T. Shoji, M. Winklhofer, H. Oezeit, M. Yano, G. Zimanyi, First order reversal curve studies of permanent magnets. J. Appl. Phys. 111, 07A728 (2012)

    Article  Google Scholar 

  45. M. Pan, P. Shang, H. Ge, N. Yu, Q. Wu, First order reversal curve analysis of exchange coupled SmCo/NdFeB nanocomposite alloys. J. Magn. Magn. Mater. 361, 219 (2014)

    Article  CAS  Google Scholar 

  46. M. Rivas, J. Garcia, I. Skorvanek, J. Marcin, P. Svec, P. Gorria, Magnetostatic interaction in soft magnetic bilayer ribbons unambiguously identified by first order reversal curve analysis. Appl. Phys. Lett. 107, 132403 (2015)

    Article  Google Scholar 

  47. V. Franco, F. Beron, K. Pirota, M. Knobel, M. Willard, Characterization of magnetic interactions of multiphase magnetocaloric materials using first order reversal curve analysis. J. Appl. Phys. 117, 17C124 (2015)

    Article  Google Scholar 

  48. B.C. Dodrill, First-Order-Reversal-Curve Analysis of Nanocomposite Permanent Magnets, Technical Proceedings of the 2015 TechConnect World Innovation Conference and Expo, CRC Press (2015)

    Google Scholar 

  49. C. Carvallo, A.R. Muxworthy, D.J. Dunlop, First-order-reversal-curve (FORC) diagrams of magnetic mixtures: Micromagnetic models and measurements. Phys. Earth Planet. Inter. 154, 308 (2006)

    Article  Google Scholar 

  50. R.J. Harrison, J.M. Feinberg, FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochem. Geophys. Geosyst. 9, 11 (2008)

    Article  Google Scholar 

  51. R. Egli, VARIFORC: An optimized protocol for calculating non-regular first-order reversal curve (FORC) diagrams. Glob. Planet. Chang. 203, 110 (2013)

    Google Scholar 

  52. Y. Cao, M. Ahmadzadeh, K. Xe, B. Dodrill, J. McCloy, Multiphase magnetic systems: Measurement and simulation. J. Appl. Phys. 123(2), 023902 (2018)

    Article  Google Scholar 

  53. C. Dubrota, A. Stancu, What does a first order reversal curve really mean: A case study: Array of ferromagnetic nanowires. J. Appl. Phys. 113, 043928 (2013)

    Article  Google Scholar 

  54. D. Roy, P.S.A. Kumar, Exchange spring behaviour in SrFe12O19-CoFe2O4 nanocomposites. AIP Adv. 5 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad Dodrill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dodrill, B., Lindemuth, J.R. (2021). Vibrating Sample Magnetometry. In: Franco, V., Dodrill, B. (eds) Magnetic Measurement Techniques for Materials Characterization. Springer, Cham. https://doi.org/10.1007/978-3-030-70443-8_2

Download citation

Publish with us

Policies and ethics