Skip to main content

Plasmon-Enhanced Homogeneous and Heterogeneous Triplet-Triplet Annihilation

  • Chapter
  • First Online:
Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells

Abstract

Triplet-triplet annihilation (TTA) process includes two categories, a homogeneous TTA occurring between two triplet excited molecules of the same type such as the homogeneous TTA upconversion (TTA-UC) and a heterogeneous TTA occurring between two triplet excited molecules of different types such as the heterogeneous TTA-UC, or between a triplet excited state and a triplet ground state such as the sensitized singlet oxygen generation. To the other front, noble metal nanostructures are known to exhibit an extraordinary capability to manipulate light through the collective oscillations of their conduction-band electrons, the so-called localized surface plasmon resonances (LSPR). Plasmonic nanostructures have been shown to be able to dramatically enhance the performances of many optical systems. In this book chapter, we will use a few examples to demonstrate that LSPR of noble metal nanoparticles can enhance the efficiency of both categories of TTA, and to discuss the conditions where such plasmonic enhancement would occur. The results shed light onto ways to improve the overall TTA efficiency, which would be relevant to the broad applications involving TTA-UC or sensitized singlet oxygen generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Ming, H. Chen, R. Jiang, Q. Li, J. Wang, Plasmon-controlled fluorescence: beyond the intensity enhancement. J. Phys. Chem. Lett. 3(2), 191–202 (2012). https://doi.org/10.1021/jz201392k

    Article  CAS  Google Scholar 

  2. R.F. Oulton, V.J. Sorger, T. Zentgraf, R.M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461(7264), 629–632 (2009). https://doi.org/10.1038/nature08364

    Article  CAS  Google Scholar 

  3. K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58(1), 267–297 (2007). https://doi.org/10.1146/annurev.physchem.58.032806.104607

    Article  CAS  Google Scholar 

  4. F. Tam, G.P. Goodrich, B.R. Johnson, N.J. Halas, Plasmonic enhancement of molecular fluorescence. Nano Lett. 7(2), 496–501 (2007). https://doi.org/10.1021/nl062901x

    Article  CAS  Google Scholar 

  5. D.V. Guzatov, S.V. Vaschenko, V.V. Stankevich, A.Y. Lunevich, Y.F. Glukhov, S.V. Gaponenko, Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment. J. Phys. Chem. C 116(19), 10723–10733 (2012). https://doi.org/10.1021/jp301598w

    Article  CAS  Google Scholar 

  6. O. Siiman, A. Lepp, Protonation of the methyl orange derivative of aspartate adsorbed on colloidal silver: a surface-enhanced resonance Raman scattering and fluorescence emission study. J. Phys. Chem. 88(12), 2641–2650 (1984). https://doi.org/10.1021/j150656a043

    Article  CAS  Google Scholar 

  7. J.C. Rubim, I.G.R. Gutz, O. Sala, Surface-Enhanced Raman Scattering (SERS) and fluorescence spectra from mixed copper(I)/pyridine/iodide complexes on a copper electrode. Chem. Phys. Lett. 111, 117–122 (1984)

    Article  CAS  Google Scholar 

  8. J.R. Lakowicz, Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 337(2), 171–194 (2005). https://doi.org/10.1016/j.ab.2004.11.026

    Article  CAS  Google Scholar 

  9. R.M. Bakker, H.K. Yuan, Z. Liu, V.P. Drachev, A.V. Kildishev, V.M. Shalaev, R.H. Pedersen, S. Gresillon, A. Boltasseva, Enhanced localized fluorescence in plasmonic nanoantennae. Appl. Phys. Lett. 92(4), 043101 (2008). https://doi.org/10.1063/1.2836271

    Article  CAS  Google Scholar 

  10. S. Eustis, M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35(3), 209–217 (2006). https://doi.org/10.1039/B514191E

    Article  CAS  Google Scholar 

  11. K.G. Thomas, P.V. Kamat, Chromophore-functionalized gold nanoparticles. Acc. Chem. Res. 36(12), 888–898 (2003). https://doi.org/10.1021/ar030030h

    Article  CAS  Google Scholar 

  12. S. Baluschev, F. Yu, T. Miteva, S. Ahl, A. Yasuda, G. Nelles, W. Knoll, G. Wegner, Metal-enhanced up-conversion fluorescence: effective triplet-triplet annihilation near silver surface. Nano Lett. 5(12), 2482–2484 (2005). https://doi.org/10.1021/nl0517969

    Article  CAS  Google Scholar 

  13. K. Poorkazem, A.V. Hesketh, T.L. Kelly, Plasmon-enhanced triplet-triplet annihilation using silver nanoplates. J. Phys. Chem. C 118(12), 6398–6404 (2014). https://doi.org/10.1021/jp412223m

    Article  CAS  Google Scholar 

  14. H. Yonemura, Y. Naka, M. Nishino, H. Sakaguchi, S. Yamada, Effect of gold nanoparticle on photon upconversion based on sensitized triplet–triplet annihilation in polymer films. Mol. Cryst. Liq. Cryst. 654(1), 196–200 (2017). https://doi.org/10.1080/15421406.2017.1358044

    Article  CAS  Google Scholar 

  15. Ł. Bujak, K. Narushima, D.K. Sharma, S. Hirata, M. Vacha, Plasmon enhancement of triplet exciton diffusion revealed by nanoscale imaging of photochemical fluorescence upconversion. J. Phys. Chem. C 121(45), 25479–25486 (2017). https://doi.org/10.1021/acs.jpcc.7b08495

    Article  CAS  Google Scholar 

  16. X. Cao, B. Hu, R. Ding, P. Zhang, Plasmon-enhanced homogeneous and heterogeneous triplet-triplet annihilation by gold nanoparticles. Phys. Chem. Chem. Phys. 17(22), 14479–14483 (2015). https://doi.org/10.1039/c5cp01876e

    Article  CAS  Google Scholar 

  17. E.G. Westbrook, P. Zhang, Plasmon-enhanced triplet-triplet annihilation upconversion of post-modified polymeric acceptors. Dalton Trans. 47(26), 8638–8645 (2018). https://doi.org/10.1039/c8dt00269j

    Article  CAS  Google Scholar 

  18. S. Jin, K. Sugawa, N. Takeshima, H. Tahara, S. Igari, S. Yoshinari, Y. Kurihara, S. Watanabe, M. Enoki, K. Sato, W. Inoue, K. Tokuda, T. Akiyama, R. Katoh, K. Takase, H. Ozawa, T. Okazaki, T. Watanabe, J. Otsuki, Precise control of localized surface plasmon wavelengths is needed for effective enhancement of triplet-triplet annihilation-based upconversion emission. ACS Photonics. 5(12), 5025–5037 (2018). https://doi.org/10.1021/acsphotonics.8b01292

    Article  CAS  Google Scholar 

  19. E. Petryayeva, U.J. Krull, Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal. Chim. Acta 706(1), 8–24 (2011). https://doi.org/10.1016/j.aca.2011.08.020

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Westbrook, E., Cao, X., Zhang, P. (2022). Plasmon-Enhanced Homogeneous and Heterogeneous Triplet-Triplet Annihilation. In: Lissau, J.S., Madsen, M. (eds) Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-70358-5_6

Download citation

Publish with us

Policies and ethics