Skip to main content

Effect of Slip on Vortex Formation Near Two-Part Cylinder with Same Sign Zeta Potential in a Plane Microchannel

  • Conference paper
  • First Online:
Techno-Societal 2020

Abstract

We investigate the effect of slip on the formation of recirculation zone near the two-part cylinder with the same sign zeta potential placed in a microchannel. The external electric field is used to actuate the electroosmotic flow (EOF). The governing transport equations are solved using a finite element based numerical solver. The vortex formation takes place near the upstream part of the cylinder. The strength of the vortex is analyzed in terms of the maximum magnitude of reversed flow velocity \(\left( {U_{R} } \right)\). It is found that the extent of the recirculation zone is smaller for the slip case as compared to the no-slip case. The magnitude of \(U_{R}\) increases with the slip coefficient (\(\beta\)) for smaller values of \(\beta\). Also there is a decrement in \(U_{R}\) at larger values of slip coefficient and the decrement is amplified at higher values of zeta potential. The flow rate monotonically increases with the slip coefficient and zeta potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao G, Jian Y, Li F (2016) Streaming potential and heat transfer of nanofluids in microchannels in the presence of magnetic field. J Magn Magn Mater 407:1–25

    Article  Google Scholar 

  2. Ohno K, Tachikawa K, Manz A (2008) Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29(22):4443–4453

    Article  Google Scholar 

  3. Becker H, Gartner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21(1):12–26

    Article  Google Scholar 

  4. Nandy K, Chaudhuri S, Ganguly R, Puri IK (2008) Analytical model for the magnetophoretic capture of magnetic spheres in microfluidic devices. J Magn Magn Mater 320:1398–1405

    Article  Google Scholar 

  5. Ng TN, Chen XQ, Yeung KL (2015) Direct manipulation of particle size and morphology of ordered mesoporous silica by flow synthesis. RSC Adv 5(18):13331–13340

    Article  Google Scholar 

  6. Wang C, Song Y, Pan X (2020) Electrokinetic-vortex formation near a two-part cylinder with same-sign zeta potentials in a straight microchannel. Electrophoresis 00:1–9

    Google Scholar 

  7. Liu Y, Jian Y (2019) The effects of finite ionic sizes and wall slip on entropy generation in electroosmotic flows in a soft nanochannel. J Heat Transf 141:1–11

    Article  Google Scholar 

  8. Chakraborty J, Pati S, Som SK, Chakraborty S (2012) Consistent description of electrohydrodynamics in narrow fluidic confinements in presence of hydrophobic interactions. Phys Rev E 85:046305

    Google Scholar 

  9. Mehta SK, Pati S (2021) Thermo-hydraulic and entropy generation analysis for magnetohydrodynamic pressure driven flow of nanofluid through an asymmetric wavy channel. Int J Numer Method Heat Fluid Flow 31(4):1190–1213

    Google Scholar 

  10. Mehta SK, Pati S (2019) Analysis of thermo-hydraulic performance and entropy generation characteristics for laminar flow through triangular corrugated channel. J Therm Anal Calorim 136(1):49–62

    Article  Google Scholar 

  11. Mehta SK, Pati S (2020) Numerical study of thermo-hydraulic characteristics for forced convective flow through wavy channel at different Prandtl numbers. J Therm Anal Calorim 141:2429–2451

    Google Scholar 

  12. Nguyen NT, Wu Z (2005) Micromixers-a review. J Micromech Microeng 15(2):R1–R16

    Article  Google Scholar 

  13. Maeng JS, Yoo K, Song S (2006) Modeling for fluid mixing in passive micromixers using the vortex index. J Korean Phys Soc 48(5):902–907

    Google Scholar 

  14. Shang X, Huang X, Yang C (2015) Mixing enhancement by the vortex in a microfluidic mixer with actuation. Exp Therm Fluid Sci 67:57–61

    Article  Google Scholar 

  15. Mondal B, Mehta SK, Patowari PK, Pati S (2019) Numerical study of mixing in wavy micromixers: comparison between raccoon and serpentine mixer. Chem Eng Process Process Intensif 136:44–61

    Article  Google Scholar 

  16. Soleymani A, Kolehmainen E, Turunen I (2008) Numerical and experimental investigations of liquid mixing in T-type micromixers. Chem Eng J 135S:S219–S228

    Article  Google Scholar 

  17. Erickson D, Li D (2003) Three-dimensional structure of electroosmotic flow over heterogeneous surfaces. J Phys Chem B 107(44):12212–12220

    Article  Google Scholar 

  18. Erickson D, Li D (2002) Influence of surface heterogeneity on electrokinetically driven microfluidic mixing. Langmuir 18(5):1883–1892

    Article  Google Scholar 

  19. Erickson D, Li D (2002) Microchannel flow with patchwise and periodic surface heterogeneity. Langmuir 18(23):8949–8959

    Article  Google Scholar 

  20. Song Y, Wang C, Li J, Li D (2019) Vortex generation in electroosmotic flow in a straight polydimethylsiloxane microchannel with different polybrene modified-to-unmodified section length ratios. Microfluid Nanofluid 23(2):23:24

    Google Scholar 

  21. Niavarani A, Priezjev NV (2009) The effective slip length and vortex formation in laminar flow over a rough surface. Phys Fluids 21(5):1–10

    Article  Google Scholar 

  22. Pati S, Som SK, Chakraborty S (2013) Thermodynamic performance of microscale swirling flows with interfacial slip. Int J Heat Mass Transf 57:397–401

    Article  Google Scholar 

  23. Kaushik P, Pati S, Som SK, Chakraborty S (2012) Hydrodynamic and thermal transport characteristics of swirling flows through microchannels with interfacial slip. Int J Heat Mass Transf 55:4359–4365

    Article  Google Scholar 

  24. Kaushik P, Pati S, Som SK, Chakraborty S (2012) Hydrodynamic swirl decay in microchannels with interfacial slip. Nanoscale Microscale Thermophys Eng 16:133–143

    Article  Google Scholar 

  25. Pati S, Som SK, Chakraborty S (2013) Slip-driven alteration in film condensation over vertical surfaces. Int Commun Heat Mass Transf 46:37–41

    Google Scholar 

  26. Dwivedi R, Pati S, Singh PK (2020) Combined effects of wall slip and nanofluid on interfacial transport from a thin-film evaporating meniscus in a microfluidic channel. Microfluid Nanofluid 24:84

    Google Scholar 

  27. Pati S, Kaushik P, Chakraborty S, Som SK (2014) Film condensation in presence of non-condensable gases: interplay between variable radius of curvature and interfacial slip. Int Commun Heat Mass Transf 56:31–36

    Google Scholar 

  28. Pati S, Kumar V  (2019) Effects of temperature-dependent thermo-physical properties on hydrodynamic swirl decay in microtubes. Proc Inst Mech Eng Part E: J Process Mech Eng 233(3):427–435

    Google Scholar 

  29. Pati S,  Som SK, Chakraborty S (2013) Combined influences of electrostatic component of disjoining pressure and interfacial slip on thin film evaporation in nanopores. Int J Heat Mass Transf 64:304–312

    Google Scholar 

  30. Zhao C, Zholkovskij E, Masliyah JH, Yang C (2008) Analysis of electroosmotic flow of power-law fluids in a slit microchannel. J Colloid Interface Sci 326(2):503–510

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pabi, S., Mehta, S.K., Pati, S. (2021). Effect of Slip on Vortex Formation Near Two-Part Cylinder with Same Sign Zeta Potential in a Plane Microchannel. In: Pawar, P.M., Balasubramaniam, R., Ronge, B.P., Salunkhe, S.B., Vibhute, A.S., Melinamath, B. (eds) Techno-Societal 2020. Springer, Cham. https://doi.org/10.1007/978-3-030-69921-5_101

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69921-5_101

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69920-8

  • Online ISBN: 978-3-030-69921-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics