Skip to main content

Edge Computing Based Conceptual Framework for Smart Health Care Applications Using Z-Wave and Homebased Wireless Sensor Network

  • Chapter
  • First Online:
Mobile Edge Computing

Abstract

Rapid advancement of the technology makes the system more reliable and the outcome from the system produces in a timely fashion. In this work, a conceptual framework for biomedical image analysis is considered which is based on wireless sensor networks. Here, Z-Wave based wireless biomedical image analysis system is analyzed that can be implemented to provide a concrete WSN based health care system. This work can serve as a foundation to the real-life remote health care system based on Z-Wave. Periodic study of different patients is possible from their own home which can help the physicians to take appropriate decisions in stipulated time that will certainly accelerate the physical and mental improvement. This paper studies the concepts of wireless biomedical image monitoring systems along with their features. In this context mobile edge computing can play a vital role because biomedical image monitoring systems needs to deal with huge amount of data. In general, image data consists of large volume of information. Storage and processing of such a huge amount of data is really a headache. Technologies based on mobile edge computing allows us to save valuable resources in the processing nodes and suitable to handle the resource-hungry applications. Various aspects of the WSN healthcare systems are analyzed and future directions are reported and analyzed in a comprehensive way so that this work will be beneficial for the society and can be extended towards real life implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roy M, Chakraborty S, Mali K, et al (2017) Biomedical image enhancement based on modified Cuckoo Search and morphology. In: 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON). IEEE, pp 230–235

    Google Scholar 

  2. Hore S, Chakroborty S, Ashour AS, et al (2015) Finding Contours of Hippocampus Brain Cell Using Microscopic Image Analysis. J Adv Microsc Res 10:93–103. https://doi.org/10.1166/jamr.2015.1245

    Article  Google Scholar 

  3. Chakraborty S, Chatterjee S, Dey N, et al (2017) Modified cuckoo search algorithm in microscopic image segmentation of hippocampus. Microsc Res Tech 80:. https://doi.org/10.1002/jemt.22900

  4. Chakraborty S, Chatterjee S, Dey N, et al (2017) Gradient approximation in retinal blood vessel segmentation. In: 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON). IEEE, pp 618–623

    Google Scholar 

  5. Chakraborty S, Mali K, Chatterjee S, et al (2017) An integrated method for automated biomedical image segmentation. In: 2017 4th International Conference on Opto-Electronics and Applied Optics (Optronix). IEEE, pp 1–5

    Google Scholar 

  6. Chakraborty S, Chatterjee S, Ashour AS, et al (2017) Intelligent Computing in Medical Imaging: A Study. In: Dey N (ed) Advancements in Applied Metaheuristic Computing. IGI Global, pp 143–163

    Google Scholar 

  7. Chakraborty S, Roy M, Hore S (2016) A Study on Different Edge Detection Techniques in Digital Image Processing. In: Feature Detectors and Motion Detection in Video Processing. IGI Global, pp 100–122

    Google Scholar 

  8. Hore S, Chakraborty S, Chatterjee S, et al (2016) An Integrated Interactive Technique for Image Segmentation using Stack based Seeded Region Growing and Thresholding. Int J Electr Comput Eng 6:2773–2780. https://doi.org/10.11591/ijece.v6i6.11801

  9. Chakraborty S, Mali K, Banerjee S, et al (2017) Bag-of-features based classification of dermoscopic images. In: 2017 4th International Conference on Opto-Electronics and Applied Optics (Optronix). IEEE, pp 1–6

    Google Scholar 

  10. Chakraborty S, Raman A, Sen S, et al (2019) Contrast Optimization using Elitist Metaheuristic Optimization and Gradient Approximation for Biomedical Image Enhancement. In: 2019 Amity International Conference on Artificial Intelligence (AICAI). IEEE, pp 712–717

    Google Scholar 

  11. Chakraborty S, Chatterjee S, Chatterjee A, et al (2018) Automated Breast Cancer Identification by analyzing Histology Slides using Metaheuristic Supported Supervised Classification coupled with Bag-of-Features. In: 2018 Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). IEEE, pp 81–86

    Google Scholar 

  12. Wiemer J, Schubert F, Granzow M, et al (2003) Informatics united: Exemplary studies combining medical informatics, neuroinformatics and bioinformatics. In: Methods of Information in Medicine. pp 126–133

    Google Scholar 

  13. Hore S, Chakraborty S, Chatterjee S, et al (2016) An integrated interactive technique for image segmentation using stack based seeded region growing and thresholding. Int J Electr Comput Eng 6:. https://doi.org/10.11591/ijece.v6i6.11801

  14. Chakraborty S, Chatterjee S, Dey N, et al (2018) Gradient approximation in retinal blood vessel segmentation. In: 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics, UPCON 2017

    Google Scholar 

  15. Roy M, Chakraborty S, Mali K, et al (2017) Biomedical image enhancement based on modified Cuckoo Search and morphology. In: 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON). IEEE, pp 230–235

    Google Scholar 

  16. Chakraborty S, Mali K, Chatterjee S, et al (2017) Detection of skin disease using metaheuristic supported artificial neural networks. In: 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON). IEEE, pp 224–229

    Google Scholar 

  17. Chakraborty S, Mali K, Chatterjee S, et al (2017) Image based skin disease detection using hybrid neural network coupled bag-of-features. In: 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). IEEE, pp 242–246

    Google Scholar 

  18. Roy M, Chakraborty S, Mali K, et al (2017) Cellular image processing using morphological analysis. In: 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). IEEE, pp 237–241

    Google Scholar 

  19. Roy M, Chakraborty S, Mali K, et al (2017) Biomedical image enhancement based on modified Cuckoo Search and morphology. In: 2017 8th Industrial Automation and Electromechanical Engineering Conference, IEMECON 2017

    Google Scholar 

  20. Chakraborty S, Mali K, Chatterjee S, et al (2018) Bio-medical image enhancement using hybrid metaheuristic coupled soft computing tools. In: 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2017

    Google Scholar 

  21. Chakraborty S, Mali K (2018) Application of Multiobjective Optimization Techniques in Biomedical Image Segmentation – A Study. In: Multi-Objective Optimization. Springer Singapore, Singapore, pp. 181–194

    Chapter  Google Scholar 

  22. Hore S, Chatterjee S, Chakraborty S, Shaw RK Analysis of Different Feature Description Algorithm in object Recognition. pp 66–99

    Google Scholar 

  23. Chakraborty S, Roy M, Hore S (2018) A study on different edge detection techniques in digital image processing

    Google Scholar 

  24. Chakraborty S, Roy M, Hore S (2016) A study on different edge detection techniques in digital image processing

    Google Scholar 

  25. Ritter F, Boskamp T, Homeyer A, et al (2011) Medical image analysis. IEEE Pulse 2:60–70. https://doi.org/10.1109/MPUL.2011.942929

    Article  Google Scholar 

  26. Dey N, Ashour AS, Shi F, et al (2017) Developing residential wireless sensor networks for ECG healthcare monitoring. IEEE Trans Consum Electron 63:442–449. https://doi.org/10.1109/TCE.2017.015063

    Article  Google Scholar 

  27. Chakraborty S, Mali K, Chatterjee S, et al (2018) Dermatological effect of UV rays owing to ozone layer depletion. In: 2017 4th International Conference on Opto-Electronics and Applied Optics, Optronix 2017

    Google Scholar 

  28. Chakraborty S, Mali K, Banerjee S, et al (2018) Bag-of-features based classification of dermoscopic images. In: 2017 4th International Conference on Opto-Electronics and Applied Optics, Optronix 2017

    Google Scholar 

  29. How Wearable Devices Are Changing the Paradigm of Medical Imaging? – QuEST Global. https://www.quest-global.com/how-wearable-devices-are-changing-the-paradigm-of-medical-imaging/. Accessed 27 Apr 2018

  30. Rodgers MM, Pai VM, Conroy RS (2015) Recent Advances in Wearable Sensors for Health Monitoring. IEEE Sens J 15:3119–3126. https://doi.org/10.1109/JSEN.2014.2357257

    Article  Google Scholar 

  31. Datta S, Chakraborty S, Mali K, et al (2017) Optimal usage of pessimistic association rules in cost effective decision making. In: 2017 4th International Conference on Opto-Electronics and Applied Optics (Optronix). IEEE, pp 1–5

    Google Scholar 

  32. Microsoft HoloLens | The leader in mixed reality technology. https://www.microsoft.com/en-us/hololens. Accessed 27 Apr 2018

  33. Glass. https://x.company/glass/. Accessed 27 Apr 2018

  34. Frantz T, Jansen B, Duerinck J, Vandemeulebroucke J (2018) Augmenting Microsoft’s HoloLens with vuforia tracking for neuronavigation. Healthc Technol Lett 5:221–225. https://doi.org/10.1049/htl.2018.5079

    Article  Google Scholar 

  35. Wei NJ, Dougherty B, Myers A, Badawy SM (2018) Using Google Glass in Surgical Settings: Systematic Review. JMIR mHealth uHealth 6:e54. https://doi.org/10.2196/mhealth.9409

    Article  Google Scholar 

  36. Dougherty B, Badawy SM (2017) Using Google Glass in Nonsurgical Medical Settings: Systematic Review. JMIR mHealth uHealth 5:e159. https://doi.org/10.2196/MHEALTH.8671

    Article  Google Scholar 

  37. Sahyouni R, Moshtaghi O, Tran D, et al (2017) Assessment of google glass as an adjunct in neurological surgery. Surg Neurol Int 8:68. https://doi.org/10.4103/sni.sni_277_16

    Article  Google Scholar 

  38. REGULATION (EU) 2017/745 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 5 April 2017 on medical devices, amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and repealing Council Directives 90/385/EEC and 93/42/EEC

    Google Scholar 

  39. Ghamari M, Janko B, Sherratt R, et al (2016) A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments. Sensors 16:831. https://doi.org/10.3390/s16060831

    Article  Google Scholar 

  40. Hui TKL, Sherratt RS, Sánchez DD (2017) Major requirements for building Smart Homes in Smart Cities based on Internet of Things technologies. Futur Gener Comput Syst 76:358–369. https://doi.org/10.1016/j.future.2016.10.026

    Article  Google Scholar 

  41. Understanding Zigbee and Z-Wave Standards. https://www.reviews.com/blog/zigbee-vs-z-wave-guide/. Accessed 14 Jun 2019

  42. Z-Wave vs Zigbee vs Bluetooth vs WiFi 2016 | Inovelli. https://inovelli.com/z-wave-vs-zigbee-vs-bluetooth-vs-wifi-smart-home-technology/. Accessed 3 May 2018

  43. What is Z-Wave and How Does it Work? | Safety.com. https://www.safety.com/z-wave/. Accessed 4 May 2019

  44. Z-Wave Alliance. https://z-wavealliance.org/. Accessed 4 May 2019

  45. Gomez C, Oller J, Paradells J, et al (2012) Overview and Evaluation of Bluetooth Low Energy: An Emerging Low-Power Wireless Technology. Sensors 12:11734–11753. https://doi.org/10.3390/s120911734

    Article  Google Scholar 

  46. Sung M, Marci C, Pentland A (2005) Wearable feedback systems for rehabilitation. J Neuroeng Rehabil 2:17. https://doi.org/10.1186/1743-0003-2-17

    Article  Google Scholar 

  47. Anliker U, Ward JA, Lukowicz P, et al (2004) AMON: A Wearable Multiparameter Medical Monitoring and Alert System. IEEE Trans Inf Technol Biomed 8:415–427. https://doi.org/10.1109/TITB.2004.837888

    Article  Google Scholar 

  48. Lin B-S, Lin B-S, Chou N-K, et al (2006) RTWPMS: A Real-Time Wireless Physiological Monitoring System. IEEE Trans Inf Technol Biomed 10:647–656. https://doi.org/10.1109/TITB.2006.874194

    Article  Google Scholar 

  49. Mundt CW, Montgomery KN, Udoh UE, et al (2005) A Multiparameter Wearable Physiologic Monitoring System for Space and Terrestrial Applications. IEEE Trans Inf Technol Biomed 9:382–391. https://doi.org/10.1109/TITB.2005.854509

    Article  Google Scholar 

  50. Zhanpeng Jin, Oresko J, Shimeng Huang, Cheng AC (2009) HeartToGo: A Personalized medicine technology for cardiovascular disease prevention and detection. In: 2009 IEEE/NIH Life Science Systems and Applications Workshop. IEEE, pp 80–83

    Google Scholar 

  51. Moron MJ, Luque JR, Botella AA, et al (2007) J2ME and smart phones as platform for a Bluetooth Body Area Network for Patient-telemonitoring. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp 2791–2794

    Google Scholar 

  52. Guo L, Chen Z, Zhang D, et al (2020) Age-of-information-constrained Transmission Optimization for ECG-based Body Sensor Networks. IEEE Internet Things J 1–1. https://doi.org/10.1109/jiot.2020.3025543

  53. Habetha J (2006) The myheart project – Fighting cardiovascular diseases by prevention and early diagnosis. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp 6746–6749

    Google Scholar 

  54. Luprano J, Sola J, Dasen S, et al (2006) Combination of Body Sensor Networks and On-Body Signal Processing Algorithms: the practical case of MyHeart project

    Google Scholar 

  55. Pacelli M, Loriga G, Taccini N, Paradiso R (2006) Sensing Fabrics for Monitoring Physiological and Biomechanical Variables: E-textile solutions. In: 2006 3rd IEEE/EMBS International Summer School on Medical Devices and Biosensors. IEEE, pp 1–4

    Google Scholar 

  56. Lymberis A, Paradiso R (2008) Smart fabrics and interactive textile enabling wearable personal applications: R&D state of the art and future challenges. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp 5270–5273

    Google Scholar 

  57. Scilingo EP, Gemignani A, Paradiso R, et al (2005) Performance Evaluation of Sensing Fabrics for Monitoring Physiological and Biomechanical Variables. IEEE Trans Inf Technol Biomed 9:. https://doi.org/10.1109/TITB.2005.854506

  58. Pandian PS, Mohanavelu K, Safeer KP, et al (2008) Smart Vest: Wearable multi-parameter remote physiological monitoring system. Med Eng Phys 30:466–477. https://doi.org/10.1016/J.MEDENGPHY.2007.05.014

    Article  Google Scholar 

  59. Milenković A, Otto C, Jovanov E (2006) Wireless sensor networks for personal health monitoring: Issues and an implementation. Comput Commun 29:2521–2533. https://doi.org/10.1016/J.COMCOM.2006.02.011

    Article  Google Scholar 

  60. Montón E, Hernandez JF, Blasco JM, et al (2008) Body area network for wireless patient monitoring. IET Commun 2:215. https://doi.org/10.1049/iet-com:20070046

    Article  Google Scholar 

  61. Wan-Young Chung, Young-Dong Lee, Sang-Joong Jung (2008) A wireless sensor network compatible wearable u-healthcare monitoring system using integrated ECG, accelerometer and SpO2. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp 1529–1532

    Google Scholar 

  62. Farella E, Pieracci A, Benini L, et al (2008) Interfacing human and computer with wireless body area sensor networks: the WiMoCA solution. Multimed Tools Appl 38:337–363. https://doi.org/10.1007/s11042-007-0189-5

    Article  Google Scholar 

  63. Loew N, Winzer K-J, Becher G, et al (2007) Medical Sensors of the BASUMA Body Sensor Network. In: 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007). Springer Berlin Heidelberg, Berlin, Heidelberg, pp 171–176

    Google Scholar 

  64. Hao Y, Foster R (2008) Wireless body sensor networks for health-monitoring applications. Physiol Meas 29:R27–R56. https://doi.org/10.1088/0967-3334/29/11/R01

    Article  Google Scholar 

  65. Chaudhury S, Roy S, Agarwal I, Ray N (2020) Real-time processing and monitoring in health care. In: EAI/Springer Innovations in Communication and Computing. Springer Science and Business Media Deutschland GmbH, pp 99–116

    Google Scholar 

  66. Al-Sheikh MA, Ameen IA (2020) Design of Mobile Healthcare Monitoring System Using IoT Technology and Cloud Computing. In: IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing, p 012113

    Google Scholar 

  67. Neranjan Thilakarathne N, Krishna Kagita M, Reddy Gadekallu T The Role of the Internet of Things in Health Care: A Systematic and Comprehensive Study. Int J Eng Manag Res. https://doi.org/10.31033/ijemr.10.4.22

  68. Kadhim KT, Alsahlany AM, Wadi SM, Kadhum HT (2020) An Overview of Patient’s Health Status Monitoring System Based on Internet of Things (IoT). Wirel. Pers. Commun. 114:2235–2262

    Article  Google Scholar 

  69. Dong P, Ning Z, Obaidat MS, et al (2020) Edge Computing Based Healthcare Systems: Enabling Decentralized Health Monitoring in Internet of Medical Things. IEEE Netw 34:254–261. https://doi.org/10.1109/MNET.011.1900636

    Article  Google Scholar 

  70. Abdellatif AA, Mohamed A, Chiasserini CF, et al (2020) Edge computing for energy-efficient smart health systems. In: Energy Efficiency of Medical Devices and Healthcare Applications. Elsevier, pp 53–67

    Google Scholar 

  71. Pateraki M, Fysarakis K, Sakkalis V, et al (2020) Biosensors and Internet of Things in smart healthcare applications: challenges and opportunities. In: Wearable and Implantable Medical Devices. Elsevier, pp 25–53

    Google Scholar 

  72. Alhussein M, Muhammad G, Hossain MS, Amin SU (2018) Cognitive IoT-Cloud Integration for Smart Healthcare: Case Study for Epileptic Seizure Detection and Monitoring. Mob Networks Appl 23:1624–1635. https://doi.org/10.1007/s11036-018-1113-0

    Article  Google Scholar 

  73. Saha HN, Mandal A, Sinha A (2017) Recent trends in the Internet of Things. In: 2017 IEEE 7th Annual Computing and Communication Workshop and Conference, CCWC 2017. Institute of Electrical and Electronics Engineers Inc.

    Google Scholar 

  74. Gardašević G, Katzis K, Bajić D, Berbakov L (2020) Emerging Wireless Sensor Networks and Internet of Things Technologies – Foundations of Smart Healthcare. Sensors 20:3619. https://doi.org/10.3390/s20133619

    Article  Google Scholar 

  75. Han J, Choi C, Park W, et al (2014) Smart home energy management system including renewable energy based on ZigBee and PLC. IEEE Trans Consum Electron 60:198–202. https://doi.org/10.1109/TCE.2014.6851994

    Article  Google Scholar 

  76. Han D-M, Lim J-H (2010) Design and implementation of smart home energy management systems based on zigbee. IEEE Trans Consum Electron 56:1417–1425. https://doi.org/10.1109/TCE.2010.5606278

    Article  Google Scholar 

  77. Kushiro N, Higuma T, Nakata M, et al (2007) Practical solution for constructing ubiquitous network in building and home control system. IEEE Trans Consum Electron 53:1387–1392. https://doi.org/10.1109/TCE.2007.4429228

    Article  Google Scholar 

  78. Byun J, Jeon B, Noh J, et al (2012) An intelligent self-adjusting sensor for smart home services based on ZigBee communications. IEEE Trans Consum Electron 58:794–802. https://doi.org/10.1109/TCE.2012.6311320

    Article  Google Scholar 

  79. Costa LCP, Almeida NS, Correa AGD, et al (2013) Accessible display design to control home area networks. IEEE Trans. Consum. Electron. 59:422–427

    Article  Google Scholar 

  80. Zualkernan IA, Al-Ali AR, Jabbar MA, et al (2009) InfoPods: Zigbee-based remote information monitoring devices for smart-homes. IEEE Trans Consum Electron 55:1221–1226. https://doi.org/10.1109/TCE.2009.5277979

    Article  Google Scholar 

  81. Sleman A, Moeller R (2011) SOA distributed operating system for managing embedded devices in home and building automation. IEEE Trans Consum Electron 57:945–952. https://doi.org/10.1109/TCE.2011.5955244

    Article  Google Scholar 

  82. Ramli AR, Leong CY, Perumal T (2011) Interoperability framework for smart home systems. IEEE Trans Consum Electron 57:1607–1611. https://doi.org/10.1109/TCE.2011.6131132

    Article  Google Scholar 

  83. Park H, Lee I, Hwang T, Kim N (2008) Architecture of home gateway for device collaboration in extended home space. IEEE Trans Consum Electron 54:1692–1697. https://doi.org/10.1109/TCE.2008.4711222

    Article  Google Scholar 

  84. Chakraborty S, Chatterjee S, Mali K (2020) An optimized intelligent dermatologic disease classification framework based on IoT. In: Advances in Intelligent Systems and Computing. Springer, pp 131–151

    Google Scholar 

  85. Chakraborty S, Mali K (2020) An Overview of Biomedical Image Analysis From the Deep Learning Perspective. In: Chakraborty S, Mali K (eds) Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities. IGI Global

    Chapter  Google Scholar 

  86. Chakraborty S (2020) An Advanced Approach to Detect Edges of Digital Images for Image Segmentation. In: Chakraborty S, Mali K (eds) Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities. IGI GLobal

    Chapter  Google Scholar 

  87. Kim K, Cha YS, Park JM, et al (2011) Providing services using network-based humanoids in a home environment. IEEE Trans Consum Electron 57:1628–1636. https://doi.org/10.1109/TCE.2011.6131135

    Article  Google Scholar 

  88. Roy M, Chakraborty S, Mali K (2020) A Robust Image Encryption Method Using Chaotic Skew-Tent Map. In: Chakraborty S, Mali K (eds) Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities

    Google Scholar 

  89. Hämäläinen M, Hari R, Ilmoniemi RJ, et al (1993) Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497. https://doi.org/10.1103/RevModPhys.65.413

    Article  Google Scholar 

  90. Ioannides AA (2009) Magnetoencephalography (MEG). Methods Mol Biol 489:167–188. https://doi.org/10.1007/978-1-59745-543-5_8

    Article  Google Scholar 

  91. Mellinger J, Schalk G, Braun C, et al (2007) An MEG-based brain-computer interface (BCI). Neuroimage 36:581–593. https://doi.org/10.1016/j.neuroimage.2007.03.019

    Article  Google Scholar 

  92. Cichocki A, Sanei S (2007) EEG/MEG signal processing. Comput. Intell. Neurosci. 2007

    Google Scholar 

  93. Z-Wave Plus™ Certification – Z-Wave Alliance. https://z-wavealliance.org/z-wave_plus_certification/. Accessed 5 May 2019

  94. G.9959: Short range narrow-band digital radiocommunication transceivers – PHY, MAC, SAR and LLC layer specifications. https://www.itu.int/rec/T-REC-G.9959. Accessed 5 May 2019

  95. Wei C-C, Chen Y-M, Chang C-C, Yu C-H (2015) The Implementation of Smart Electronic Locking System Based on Z-Wave and Internet. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics. IEEE, pp 2015–2017

    Google Scholar 

  96. Ghamari M, Janko B, Sherratt R, et al (2016) A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments. Sensors 16:831. https://doi.org/10.3390/s16060831

    Article  Google Scholar 

  97. Fouad H (2014) Continuous Health-monitoring for early Detection of Patient by Web Telemedicine System. https://doi.org/10.13140/2.1.3495.1041

  98. Jara AJ, Zamora-Izquierdo MA, Gomez-Skarmeta AF (2009) An Ambient Assisted Living System for Telemedicine with Detection of Symptoms. Springer, Berlin, Heidelberg, pp. 75–84

    Google Scholar 

  99. Bradai N, Chaari L, and LK-IJ of E-H, 2011 undefined A comprehensive overview of wireless body area networks (WBAn). igi-global.com

  100. GK R, Engineering KB-P, 2012 undefined A survey on futuristic health care system: WBANs. Elsevier

    Google Scholar 

  101. Al-Karaki J, communications AK-I wireless, 2004 undefined Routing techniques in wireless sensor networks: a survey. ieeexplore.ieee.org

  102. Yassein M, Mardini W, (ICEMIS) AK-E& M, 2016 undefined Smart homes automation using Z-wave protocol. ieeexplore.ieee.org

  103. Boto E, Holmes N, Leggett J, et al (2018) Moving magnetoencephalography towards real-world applications with a wearable system. Nature 555:657–661. https://doi.org/10.1038/nature26147

    Article  Google Scholar 

  104. Cohen D, Halgren E (2003) Magnetoencephalography ( Neuromagnetism ). Encycl Neurosci 3rd:1–7

    Google Scholar 

  105. Khamayseh Y, Mardini W, … SA-IJ of, 2015 undefined Integration of wireless technologies in Smart University Campus environment: framework architecture. igi-global.com

  106. Paetz C (2015) Z-Wave Basics

    Google Scholar 

  107. Chakraborty S, Bhowmik S (2013) Job Shop Scheduling using Simulated Annealing. In: First International Conference on Computation and Communication Advancement. McGrawHill Publication, pp 69–73

    Google Scholar 

  108. Chakraborty S, Bhowmik S (2015) Blending roulette wheel selection with simulated annealing for job shop scheduling problem. In: Michael Faraday IET International Summit 2015. Institution of Engineering and Technology, pp 100 (7 .)-100 (7.)

    Google Scholar 

  109. Chakraborty S, Mali K, Chatterjee S, et al (2017) Detection of skin disease using metaheuristic supported artificial neural networks. In: 2017 8th Industrial Automation and Electromechanical Engineering Conference, IEMECON 2017. pp. 224–229

    Google Scholar 

  110. Chakraborty S, Mali K, Chatterjee S, et al (2017) Image based skin disease detection using hybrid neural network coupled bag-of-features. In: 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). IEEE, pp 242–246

    Google Scholar 

  111. Chakraborty S, Mali K, Chatterjee S, et al (2017) Bio-medical image enhancement using hybrid metaheuristic coupled soft computing tools. In: 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). IEEE, pp 231–236

    Google Scholar 

  112. Chakraborty S, Seal A, Roy M (2015) An Elitist Model for Obtaining Alignment of Multiple Sequences using Genetic Algorithm. In: 2nd National Conference NCETAS 2015. International Journal of Innovative Research in Science, Engineering and Technology, pp 61–67

    Google Scholar 

  113. Chakraborty S, Chatterjee S, Dey N, et al (2017) Modified cuckoo search algorithm in microscopic image segmentation of hippocampus. Microsc Res Tech 1–22. https://doi.org/10.1002/jemt.22900

  114. Chakraborty S, Bhowmik S (2015) An Efficient Approach to Job Shop Scheduling Problem using Simulated Annealing. Int J Hybrid Inf Technol 8:273–284. https://doi.org/10.14257/ijhit.2015.8.11.23

  115. Sarddar D, Chakraborty S, Roy M (2015) An Efficient Approach to Calculate Dynamic Time Quantum in Round Robin Algorithm for Efficient Load Balancing. Int J Comput Appl 123:48–52. https://doi.org/10.5120/ijca2015905701

    Article  Google Scholar 

  116. Fouladi B, Ghanoun S (2013) Security Evaluation of the Z-Wave Wireless Protocol. Black hat 6

    Google Scholar 

  117. Hung C, Bai Y, Consumer RT-IT on, 2012 undefined Design of blood pressure measurement with a health management system for the aged. ieeexplore.ieee.org

  118. Kim K, Shin S, Suh J, et al Home healthcare self-monitoring system for chronic diseases. ieeexplore.ieee.org

  119. Tung H, Tsang K, … HT-IT on, 2013 undefined The design of dual radio ZigBee homecare gateway for remote patient monitoring. ieeexplore.ieee.org

  120. Knight M (2006) How safe is Z-Wave? [Wireless standards]. Comput Control Eng 17:18–23. https://doi.org/10.1049/cce:20060601

    Article  Google Scholar 

  121. Seal A, Chakraborty S, Mali K (2017) A New and Resilient Image Encryption Technique Based on Pixel Manipulation, Value Transformation and Visual Transformation Utilizing Single–Level Haar Wavelet Transform. In: Proceedings of the First International Conference on Intelligent Computing and Communication. Springer, Singapore, pp. 603–611

    Chapter  Google Scholar 

  122. Mali K, Chakraborty S, Seal A, Roy M (2015) An Efficient Image Cryptographic Algorithm based on Frequency Domain using Haar Wavelet Transform. Int J Secur Its Appl 9:279–288. https://doi.org/10.14257/ijsia.2015.9.12.26

  123. Chakraborty S, Seal A, Roy M, Mali K (2016) A novel lossless image encryption method using DNA substitution and chaotic logistic map. Int J Secur its Appl 10:205–216. https://doi.org/10.14257/ijsia.2016.10.2.19

  124. Mali K, Chakraborty S, Roy M (2015) A Study on Statistical Analysis and Security Evaluation Parameters in Image Encryption. IJSRD-International J Sci Res Dev 3:2321–0613

    Google Scholar 

  125. Roy M, Mali K, Chatterjee S, et al (2019) A Study on the Applications of the Biomedical Image Encryption Methods for Secured Computer Aided Diagnostics. In: 2019 Amity International Conference on Artificial Intelligence (AICAI). IEEE, pp 881–886

    Google Scholar 

  126. Roy M, Chakraborty S, Mali K, et al (2020) Data Security Techniques Based on DNA Encryption. In: Advances in Intelligent Systems and Computing. Springer, pp 239–249

    Google Scholar 

  127. Roy M, Chakraborty S, Mali K, et al (2020) Biomedical Image Security Using Matrix Manipulation and DNA Encryption. In: Advances in Intelligent Systems and Computing. Springer, pp 49–60

    Google Scholar 

  128. Roy M, Chakraborty S, Mali K, et al (2019) A dual layer image encryption using polymerase chain reaction amplification and dna encryption. In: 2019 International Conference on Opto-Electronics and Applied Optics, Optronix 2019. Institute of Electrical and Electronics Engineers Inc.

    Google Scholar 

  129. Chakraborty S, Mali K (2020) SuFMoFPA: A superpixel and meta-heuristic based fuzzy image segmentation approach to explicate COVID-19 radiological images. Expert Syst Appl 114142. https://doi.org/10.1016/j.eswa.2020.114142

  130. Chakraborty S, Mali K (2020) Fuzzy Electromagnetism Optimization (FEMO) and its application in biomedical image segmentation. Appl Soft Comput 97:106800. https://doi.org/10.1016/j.asoc.2020.106800

    Article  Google Scholar 

  131. Xie Y, Xing F, Kong X, et al (2015) Beyond classification: Structured regression for robust cell detection using convolutional neural network. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, pp 358–365

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, S., Mali, K., Chatterjee, S. (2021). Edge Computing Based Conceptual Framework for Smart Health Care Applications Using Z-Wave and Homebased Wireless Sensor Network. In: Mukherjee, A., De, D., Ghosh, S.K., Buyya, R. (eds) Mobile Edge Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-69893-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69893-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69892-8

  • Online ISBN: 978-3-030-69893-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics