Skip to main content

Charge-Current Correlation Identities for Stochastic Interacting Particle Systems

  • Conference paper
  • First Online:
From Particle Systems to Partial Differential Equations (ICPS 2019, ICPS 2018, ICPS 2017)

Abstract

We adapt a recent proof of generic quantum-mechanical charge-current correlation identities with local conservation laws to stochastic interacting particle systems. Unlike in earlier proofs no translation invariance is required. We clarify the validity of an Onsager-type current symmetry that generally appears in hyperbolic systems of conservation laws that arise as hydrodynamic limits of stochastic interacting particle systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Solutions of (1) generically develop shocks after a finite time that depends on the initial data [6, 7].

  2. 2.

    (a) Notice the negative sign and the appearance of the time-reversed current in the definition of \(\tilde{C}^{\alpha \beta }_L(k,l,t)\), in contrast to the quantum case [14]. (b) For the distance \(r=l-k\) between two sites the periodicity implies that distance \(r=L-1\) is the same as distance \(r=-1\).

  3. 3.

    We have redefined \(A^{\alpha \beta }_L(k,t)\) by a factor of L compared to [14]. This makes formulas that appear in the proofs neater.

References

  1. C. Kipnis, C. Landim, Scaling Limits of Interacting Particle Systems (Springer, Berlin, 1999)

    Book  Google Scholar 

  2. A. Bressan, Hyperbolic systems of conservation laws in one space dimension, in Proceedings of the ICM, Beijing 2002, vol. 1 (2002), pp. 59–178. arXiv:math/0212392, Cited 3 Mar 2020

  3. V. Popkov, G.M. Schütz, Shocks and excitation dynamics in a driven diffusive two-channel system. J. Stat. Phys. 112, 523–540 (2003)

    Article  MathSciNet  Google Scholar 

  4. B. Tóth, B. Valkó, Onsager relations and Eulerian hydrodynamic limit for systems with several conservation laws. J. Stat. Phys. 112, 497–521 (2003)

    Article  MathSciNet  Google Scholar 

  5. H.T. Yau, Relative entropy and hydrodynamics of Ginzburg–Landau models. Lett. Math. Phys. 22, 63–80 (1991)

    Article  MathSciNet  Google Scholar 

  6. P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves (Society for Industrial and Applied Mathematics, Philadelphia, 1973)

    Google Scholar 

  7. D. Serre, Systems of Conservation Laws (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  8. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (W. A. Benjamin Inc., Reading, MA, 1975)

    Google Scholar 

  9. H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, Berlin, 1991)

    Book  Google Scholar 

  10. C. Bahadoran, H. Guiol, K. Ravishankar, E. Saada, Euler hydrodynamics of one-dimensional attractive particle systems. Ann. Prob. 34, 1339–1369 (2006)

    Article  MathSciNet  Google Scholar 

  11. R. Grisi, G.M. Schütz, Current symmetries for particle systems with several conservation laws. J. Stat. Phys. 145, 1499–1512 (2011)

    Article  MathSciNet  Google Scholar 

  12. O.A. Castro-Alvaredo, B. Doyon, T. Yoshimura, Emergent hydrodynamics in integrable quantum systems out of equilibrium. Phys. Rev. X 6, 041065 (2016)

    Google Scholar 

  13. J. De Nardis, D. Bernard, B. Doyon, Diffusion in generalized hydrodynamics and quasiparticle scattering. SciPost Phys. 6, 049 (2019)

    Article  MathSciNet  Google Scholar 

  14. D. Karevski, G.M. Schütz, Charge-current correlation equalities for quantum systems far from equilibrium. SciPost Phys. 6, 068 (2019)

    Article  MathSciNet  Google Scholar 

  15. T.M. Liggett, Stochastic Interacting Systems: Contact Voter and Exclusion Processes (Springer, Berlin, 1999)

    Book  Google Scholar 

  16. G.M. Schütz, Critical phenomena and universal dynamics in one-dimensional driven diffusive systems with two species of particles. J. Phys. A: Math. Gen. 36, R339–R379 (2003)

    Article  MathSciNet  Google Scholar 

  17. G.M. Schütz, Fluctuations in Stochastic Interacting Particle Systems, in Stochastic Dynamics Out of Equilibrium. IHPStochDyn 2017, eds. by G. Giacomin, S. Olla, E. Saada, H. Spohn, G. Stoltz. Springer Proceedings in Mathematics & Statistics, vol 282 (Springer, Cham, 2019)

    Google Scholar 

  18. E. Lieb, D. Robinson, The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)

    Article  MathSciNet  Google Scholar 

  19. H. Spohn, Fluctuating hydrodynamics approach to equilibrium time correlations for anharmonic chains, in Thermal Transport in Low Dimensions. From Statistical Physics to Nanoscale Heat Transfer, ed. by S. Lepri. Lecture Notes in Physics, vo. 921 (Springer, Switzerland, 2016), pp. 107–158

    Google Scholar 

  20. V. Popkov, A. Schadschneider, J. Schmidt, G.M. Schütz, Fibonacci family of dynamical universality classes. Proc. Natl. Acad. Sci. (USA) 112, 12645–12650 (2015)

    Article  MathSciNet  Google Scholar 

  21. A. Kundu, A. Dhar, Equilibrium dynamical correlations in the Toda chain and other integrable models. Phys. Rev. E 94, 062130 (2016)

    Article  MathSciNet  Google Scholar 

  22. D. Karevski, G.M. Schütz, Conformal invariance in driven diffusive systems at high currents. Phys. Rev. Lett. 118, 030601 (2017)

    Article  Google Scholar 

  23. S. Ramaswamy, M. Barma, D. Das, A. Basu, Phase diagram of a two-species lattice model with a linear instability. Phase Trans. 75, 363–375 (2002)

    Article  Google Scholar 

  24. Y. Kafri, E. Levine, D. Mukamel, G.M. Schütz, R.D. Willmann, Phase-separation transition in one-dimensional driven models. Phys. Rev. E 68, 035101(R) (2003)

    Article  Google Scholar 

  25. S. Chakraborty, S. Pal, S. Chatterjee, M. Barma, Large compact clusters and fast dynamics in coupled nonequilibrium systems. Phys. Rev. E 93, 050102(R) (2016)

    Article  Google Scholar 

  26. P.A. Ferrari, L.R.G. Fontes, Shock fluctuations in the asymmetric simple exclusion process. Prob. Theory Relat. Fields 99, 305–319 (1994)

    Article  MathSciNet  Google Scholar 

  27. M. Dudziński, G.M. Schütz, Relaxation spectrum of the asymmetric exclusion process with open boundaries. J. Phys. A: Math. Gen. 33, 8351–8364 (2000)

    Article  Google Scholar 

  28. V. Belitsky, G.M. Schütz, Diffusion and scattering of shocks in the partially asymmetric simple exclusion process. Electron. J. Prob. 7, paper 11, 1–21 (2002)

    Google Scholar 

  29. J. de Gier, F.H.L. Essler, Exact spectral gaps of the asymmetric exclusion process with open boundaries. J. Stat. Mech. P12011 (2006)

    Google Scholar 

  30. G. Schütz, Generalized Bethe ansatz solution of a one-dimensional asymmetric exclusion process on a ring with blockage. J. Stat. Phys. 71, 471–505 (1993)

    Google Scholar 

  31. G.M. Schütz, On the phase transition in the deterministic sublattice TASEP with stochastic defect (2020). http://iopscience.iop.org/10.1088/1751-8121/abb042

  32. H. Hinrichsen, S. Sandow, Deterministic exclusion process with a stochastic defect: matrix-product ground states. J. Phys. A: Math. Gen. 30, 2745–2756 (1997)

    Article  MathSciNet  Google Scholar 

  33. K. Mallick, S. Sandow, Finite-dimensional representations of the quadratic algebra: Applications to the exclusion process. J. Phys. A: Math. Gen. 30, 4513–4526 (1997)

    Article  MathSciNet  Google Scholar 

  34. F.H. Jafarpour, S.R. Masharian, Matrix product steady states as superposition of product shock measures in 1D driven systems. J. Stat. Mech. P10013 (2007)

    Google Scholar 

  35. T. Seppäläinen, Hydrodynamic profiles for the totally asymmetric exclusion process with a slow bond. J. Stat. Phys. 102, 69–96 (2001)

    Article  MathSciNet  Google Scholar 

  36. C. Bahadoran, Blockage hydrodynamics of one-dimensional driven conservative systems. Ann. Prob. 32, 805–854 (2004)

    Article  MathSciNet  Google Scholar 

  37. P. Neijjar, Transition to Shocks in TASEP and Decoupling of Last Passage Times. Latin Am. J. Prob. Math. Stat. 15, 1311–1334 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

It is a pleasure to acknowledge stimulating discussions with B. Doyon and A. Klümper on charge-current correlations in quantum systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragi Karevski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karevski, D., Schütz, G.M. (2021). Charge-Current Correlation Identities for Stochastic Interacting Particle Systems. In: Bernardin, C., Golse, F., Gonçalves, P., Ricci, V., Soares, A.J. (eds) From Particle Systems to Partial Differential Equations. ICPS ICPS ICPS 2019 2018 2017. Springer Proceedings in Mathematics & Statistics, vol 352. Springer, Cham. https://doi.org/10.1007/978-3-030-69784-6_15

Download citation

Publish with us

Policies and ethics