Skip to main content

DiscFace: Minimum Discrepancy Learning for Deep Face Recognition

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12626))

Included in the following conference series:

Abstract

Softmax-based learning methods have shown state-of-the-art performances on large-scale face recognition tasks. In this paper, we discover an important issue of softmax-based approaches: the sample features around the corresponding class weight are similarly penalized in the training phase even though their directions are different from each other. This directional discrepancy, i.e., process discrepancy leads to performance degradation at the evaluation phase. To mitigate the issue, we propose a novel training scheme, called minimum discrepancy learning that enforces directions of intra-class sample features to be aligned toward an optimal direction by using a single learnable basis. Furthermore, the single learnable basis facilitates disentangling the so-called class-invariant vectors from sample features, such that they are effective to train under class-imbalanced datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q.: Deep learning face representation by joint identification-verification. Advances in Neural Information Processing Systems (NIPS), pp. 1988–1996 (2014)

    Google Scholar 

  2. Hu, J., Lu, J., Tan, Y.P.: Discriminative deep metric learning for face verification in the wild. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1875–1882 (2014)

    Google Scholar 

  3. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  4. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  5. Wang, F., Xiang, X., Cheng, J., Yuille, A.L.: NormFace: L2 hypersphere embedding for face verification. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1041–1049 (2017)

    Google Scholar 

  6. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  7. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  8. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  9. Zhao, K., Xu, J., Cheng, M.M.: RegularFace: deep face recognition via exclusive regularization. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  10. Yin, X., Yu, X., Sohn, K., Liu, X., Chandraker, M.: Feature transfer learning for face recognition with under-represented data. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  11. Han, C., Shan, S., Kan, M., Wu, S., Chen, X.: Face recognition with contrastive convolution. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 120–135. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_8

    Chapter  Google Scholar 

  12. Wang, M., Deng, W.: Deep face recognition: a survey. arXiv preprint arXiv:1804.06655 (2018)

  13. Wang, F., Cheng, J., Liu, W., Liu, H.: Additive margin softmax for face verification. IEEE Signal Process. Lett. 25, 926–930 (2018)

    Article  Google Scholar 

  14. Zheng, T., Deng, W.: Cross-pose LFW: a database for studying crosspose face recognition in unconstrained environments. Technical report (2018)

    Google Scholar 

  15. Whitelam, C., et al.: IARPA janus benchmark-b face dataset. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 592–600 (2017)

    Google Scholar 

  16. Maze, B., et al.: IARPA janus benchmark-C: face dataset and protocol. In: International Conference on Biometrics (ICB), pp. 158–165 (2018)

    Google Scholar 

  17. Cheng, Z., Zhu, X., Gong, S.: Surveillance face recognition challenge. arXiv preprint arXiv:1804.09691 (2018)

  18. Chen, B., Deng, W., Shen, H.: Virtual class enhanced discriminative embedding learning. In: Advances in Neural Information Processing Systems (NIPS), pp. 1942–1952 (2018)

    Google Scholar 

  19. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (ICLR), pp. 6438–6447 (2018)

    Google Scholar 

  20. Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states. In: The International Conference on Machine Learning (ICML), pp. 6438–6447 (2019)

    Google Scholar 

  21. Kim, I., Kim, K., Kim, J., Choi, C.: Deep speaker representation using orthogonal decomposition and recombination for speaker verification. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6129–6130 (2019). https://doi.org/10.1109/ICASSP.2019.8683332

  22. Jang, E., Gu, S., Poole, B.: Categorical reparametrization with gumble-softmax. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  23. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks . In: International Conference on Machine Learning (ICML), pp. 1321–1330 (2017)

    Google Scholar 

  24. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  25. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  26. Ranjan, R., et al: Crystal loss and quality pooling for unconstrained face verification and recognition. arXiv preprint arXiv:1804.01159 (2018)

  27. Zheng, Y., Pal, D.K., Savvides, M.: Ring loss: convex feature normalization for face recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  28. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: The IEEE Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 67–74 (2018)

    Google Scholar 

  29. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  30. Dong, Y., Zhen Lei, S.L., Li, S.Z.: Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)

  31. Sengupta, S., Chen, J.C., Castillo, C., Patel, V.M., Chellappa, R., Jacobs, D.W.: Frontal to profile face verification in the wild. In: The IEEE Winter Conference on Applications of Computer Vision (WACV) (2016)

    Google Scholar 

  32. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23, 1499–1503 (2016)

    Article  Google Scholar 

  33. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07–49, University of Massachusetts, Amhertst (2007)

    Google Scholar 

  34. Zheng, T., Deng, W., Hu, J.: Cross-age LFW: a database for studying cross-age face recognition in unconstrained environments. arXiv:1708.08197 (2017)

  35. Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: AgeDB: the first manually collected, in-the-wild age database. In: The IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 51–59 (2017)

    Google Scholar 

  36. Kemelmacher-Shlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The megaface benchmark: 1 million faces for recognition at scale. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4873–4882 (2016)

    Google Scholar 

  37. Ng, H.W., Winkler, S.: A data-driven approach to cleaning large face datasets. In: IEEE International Conference on Image Processing (ICIP), pp. 343–347 (2014)

    Google Scholar 

  38. Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse, selective, and robust. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2892–2900 (2015)

    Google Scholar 

  39. Wang, Y., et al.: Orthogonal deep features decomposition for age-invariant face recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 764–779. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_45

    Chapter  Google Scholar 

  40. Shi, Y., Jain, A.K.: Probabilistic face embeddings. In: The IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  41. Liu, H., Zhu, X., Lei, Z., Li, S.Z.: AdaptiveFace: adaptive margin and sampling for face recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  42. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  43. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  44. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted Gaussian mixture models. Digit. Signal Proc. 10, 19–41 (2000)

    Article  Google Scholar 

  45. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Insoo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, I. et al. (2021). DiscFace: Minimum Discrepancy Learning for Deep Face Recognition. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12626. Springer, Cham. https://doi.org/10.1007/978-3-030-69541-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69541-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69540-8

  • Online ISBN: 978-3-030-69541-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics