Skip to main content

EvolGAN: Evolutionary Generative Adversarial Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12625))

Abstract

We propose to use a quality estimator and evolutionary methods to search the latent space of generative adversarial networks trained on small, difficult datasets, or both. The new method leads to the generation of significantly higher quality images while preserving the original generator’s diversity. Human raters preferred an image from the new version with frequency 83.7% for Cats, 74% for FashionGen, 70.4% for Horses, and 69.2% for Artworks - minor improvements for the already excellent GANs for faces. This approach applies to any quality scorer and GAN generator.

B. Roziere and F. Teytaud—Equal contribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.thishorsedoesnotexist.com/,https://www.thispersondoesnotexist.com/,https://www.thisartworkdoesnotexist.com/,https://www.thiscatdoesnotexist.com/.

References

  1. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  2. Sbai, O., Elhoseiny, M., Bordes, A., LeCun, Y., Couprie, C.: DesIGN: design inspiration from generative networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 37–44. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_5

    Chapter  Google Scholar 

  3. Zhu, S., Fidler, S., Urtasun, R., Lin, D., Loy, C.C.: Be your own prada: fashion synthesis with structural coherence. In: ICCV (2017)

    Google Scholar 

  4. Elgammal, A., Liu, B., Elhoseiny, M., Mazzone, M.: Creative adversarial networks. In: ICCC (2017)

    Google Scholar 

  5. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

  6. Park, T., Liu, M., Wang, T., Zhu, J.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)

    Google Scholar 

  7. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. In: ICLR (2017)

    Google Scholar 

  8. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321, 321–331 (2018)

    Article  Google Scholar 

  9. Nie, D., et al.: Medical image synthesis with context-aware generative adversarial networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2017)

    Google Scholar 

  10. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan (2019)

    Google Scholar 

  11. Noguchi, A., Harada, T.: Image generation from small datasets via batch statistics adaptation. CoRR abs/1904.01774 (2019)

    Google Scholar 

  12. Parimala, K., Channappayya, S.: Quality aware generative adversarial networks. In: Advances in Neural Information Processing Systems, pp. 2948–2958 (2019)

    Google Scholar 

  13. Yi, Z., Chen, Z., Cai, H., Mao, W., Gong, M., Zhang, H.: BSD-GAN: branched generative adversarial network for scale-disentangled representation learning and image synthesis. IEEE Trans. Image Process. (2020)

    Google Scholar 

  14. Roziere, B., et al.: Tarsier: evolving noise injection in super-resolution gans. arXiv preprint arXiv:2009.12177 (2020)

  15. Nguyen, A., Clune, J., Bengio, Y., Dosovitskiy, A., Yosinski, J.: Plug & play generative networks: Conditional iterative generation of images in latent space (2016)

    Google Scholar 

  16. Volz, V., Schrum, J., Liu, J., Lucas, S.M., Smith, A., Risi, S.: Evolving mario levels in the latent space of a deep convolutional generative adversarial network. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 221–228. Association for Computing Machinery, New York (2018)

    Google Scholar 

  17. Giacomello, E., Lanzi, P.L., Loiacono, D.: Searching the latent space of a generative adversarial network to generate doom levels. In: 2019 IEEE Conference on Games (CoG), pp. 1–8 (2019)

    Google Scholar 

  18. Engel, J.H., Hoffman, M., Roberts, A.: Latent constraints: Learning to generate conditionally from unconditional generative models. CoRR abs/1711.05772 (2017)

    Google Scholar 

  19. Shen, Y., Gu, J., Tang, X., Zhou, B.: Interpreting the latent space of gans for semantic face editing (2019)

    Google Scholar 

  20. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36

    Chapter  Google Scholar 

  21. Mariani, G., Scheidegger, F., Istrate, R., Bekas, C., Malossi, C.: Bagan: data augmentation with balancing gan. arXiv preprint arXiv:1803.09655 (2018)

  22. Gurumurthy, S., Sarvadevabhatla, R.K., Radhakrishnan, V.B.: Deligan: generative adversarial networks for diverse and limited data. CoRR abs/1706.02071 (2017)

    Google Scholar 

  23. Wang, C., Xu, C., Yao, X., Tao, D.: Evolutionary generative adversarial networks. CoRR abs/1803.00657 (2018)

    Google Scholar 

  24. Bontrager, P., Lin, W., Togelius, J., Risi, S.: Deep interactive evolution. In: Liapis, A., Romero Cardalda, J.J., Ekárt, A. (eds.) EvoMUSART 2018. LNCS, vol. 10783, pp. 267–282. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77583-8_18

    Chapter  Google Scholar 

  25. Riviere, M., Teytaud, O., Rapin, J., LeCun, Y., Couprie, C.: Inspirational adversarial image generation. arXiv preprint 1906, 11661 (2019)

    Google Scholar 

  26. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  27. Ye, P., Kumar, J., Kang, L., Doermann, D.: Unsupervised feature learning framework for no-reference image quality assessment. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  28. Hosu, V., Lin, H., Sziranyi, T., Saupe, D.: Koniq-10k: an ecologically valid database for deep learning of blind image quality assessment. IEEE Trans. Image Process. 29, 1 (2020)

    Google Scholar 

  29. Hosu, V., Goldlucke, B., Saupe, D.: Effective aesthetics prediction with multi-level spatially pooled features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9375–9383 (2019)

    Google Scholar 

  30. Dang, D.-C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist populations. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 803–813. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_75

    Chapter  Google Scholar 

  31. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 777–784 (2017)

    Google Scholar 

  32. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223(2017)

    Google Scholar 

  33. Riviere, M.: Pytorch GAN Zoo (2019). https://GitHub.com/FacebookResearch/pytorch_GAN_zoo

  34. Rapin, J., Teytaud, O.: Nevergrad - A gradient-free optimization platform. https://GitHub.com/FacebookResearch/Nevergrad (2018)

  35. Moxiegushi: Pokegan (2018). https://github.com/moxiegushi/pokeGAN

  36. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: ICLR (2018)

    Google Scholar 

  37. Rostamzadeh, N., Hosseini, S., Boquet, T., Stokowiec, W., Zhang, Y., Jauvin, C., Pal, C.: Fashion-Gen: The Generative Fashion Dataset and Challenge. Arxiv preprint 1806.08317 (2018)

    Google Scholar 

  38. Huang, X., Liu, M., Belongie, S.J., Kautz, J.: Multimodal unsupervised image-to-image translation. CoRR abs/1804.04732 (2018)

    Google Scholar 

  39. Zhu, J.Y., Zhang, R., Pathak, D., Darrell, T., Efros, A.A., Wang, O., Shechtman, E.: Toward multimodal image-to-image translation. In: Advances in Neural Information Processing Systems, pp. 465–476 (2017)

    Google Scholar 

Download references

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project-ID 251654672, TRR 161 (Project A05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baptiste Roziere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roziere, B. et al. (2021). EvolGAN: Evolutionary Generative Adversarial Networks. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69538-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69537-8

  • Online ISBN: 978-3-030-69538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics