Skip to main content

Cockpit: A Portal for Symbiotic Human–Robot Collaborative Assembly

  • Chapter
  • First Online:
Advanced Human-Robot Collaboration in Manufacturing

Abstract

The industrial sector today is experiencing its fourth industrial revolution, powered by technological advances in the fields of robotics, artificial intelligence and the Internet of Things (IoT). Customer demands for mass customisation have increased product variation. Moreover, products are manufactured faster and with higher consistency. In this new context, machines alone do not seem agile enough to keep pace with the growing demand for customised products and shorter cycle times. As digital technology is becoming a pervasive feature of production systems, conventional workstations, equipped with modern embedded systems and ICT, are gradually transforming into smart workstations, in which humans and robots may work and carry out their tasks together. In such a smart environment the human factor is expected to be seamlessly supported by automation systems. To achieve this, several subsystems should be integrated and orchestrated, evaluating key collaboration aspects while ensuring human safety and operational efficiency. However, the increased complexity of such a system of systems requires sophisticated control approaches to maintain high levels of adaptability to unforeseen events that may occur in runtime. For this purpose, a software platform is presented in the following sections, facilitating human–robot collaboration in the context of an assembly workstation. The platform, namely a planning and control cockpit, enables human–robot collaborative assembly, acting as the portal for planning, scheduling, and integration of all required systems to execute, control and adapt the production process to possible events. Key integrated functionalities supporting the collaboration of human operators with industrial manipulators include subsystems in charge of human safety, robot execution control, high-level planning. The platform serves as the main symbiotic orchestrator capable of adaptive assembly planning and execution control of a hybrid assembly station. A prototype implementation is described. The cockpit is tested and validated in a use case related to the automotive industry and human–robot collaborative assembly in a workstation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Mourtzis, Challenges and future perspectives for the life cycle of manufacturing networks in the mass customisation era. Logist. Res. 9(1), 1–20 (2016). https://doi.org/10.1007/s12159-015-0129-0

    Article  Google Scholar 

  2. D. Mourtzis, Design of customised products and manufacturing networks: towards frugal innovation. Int. J. Comput. Integr. Manuf. 31(12), 1161–1173 (2018). https://doi.org/10.1080/0951192X.2018.1509131

    Article  Google Scholar 

  3. K. Jackson, K. Efthymiou, J. Borton, Digital Manufacturing and Flexible Assembly Technologies for Reconfigurable Aerospace Production Systems. Procedia CIRP 52, 274–279 (2016). https://doi.org/10.1016/j.procir.2016.07.054

    Article  Google Scholar 

  4. S. Wang, J. Wan, D. Zhang, D. Li, C. Zhang, Towards smart factory for industry 4.0: A self-organized multi-agent system with big data based feedback and coordination. Comput. Networks 101, 158–168 (2016). https://doi.org/10.1016/j.comnet.2015.12.017

    Article  Google Scholar 

  5. R. Patel, M. Hedelind, and P. Lozan-Villegas, “Enabling robots in small-part assembly lines: The ROSETTA approach—an industrial perspective,” Proc. of German Conf. on Robotics (ROBOTIK), 2012. https://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6309522.

  6. I. Maurtua, A. Ibarguren, J. Kildal, L. Susperregi, B. Sierra, Human–robot collaboration in industrial applications: Safety, interaction and trust. Int. J. Adv. Robot. Syst. 14(4), 1–10 (2017). https://doi.org/10.1177/1729881417716010

    Article  Google Scholar 

  7. L. Wang, R. X. Gao, J. Váncza, J. Krüger, X. V. Wang, S. Makris and G. Chryssolouris, “Symbiotic Human–Robot Collaborative Assembly,” CIRP Annals—Manufacturing Technology, Vol.68, No.2, pp.701–726, 2019.

    Google Scholar 

  8. A. Pichler, S. Chandra Akkaladevi, M. Ikeda, M. Hofmann, M. Plasch, C. Wögerer, G. Fritz, “Towards Shared Autonomy for Robotic Tasks in Manufacturing,” Procedia Manuf., vol. 11, pp. 72–82, 2017, doi: https://doi.org/10.1016/j.promfg.2017.07.139.

  9. V. Vyatkin, IEC 61499 as enabler of distributed and intelligent automation: State-of-the-art review. IEEE Trans. Ind. Informatics 7(4), 768–781 (2011). https://doi.org/10.1109/TII.2011.2166785

    Article  Google Scholar 

  10. S. Wang, C. Zhang, D. Jia, Improvement of type declaration of the IEC 61499 basic function block for developing applications of cyber-physical system. Microprocess. Microsyst. 39(8), 1255–1261 (2015). https://doi.org/10.1016/j.micpro.2015.07.004

    Article  Google Scholar 

  11. T.C. Yang, Networked control system: A brief survey. IEE Proc. Control Theory Appl. 153(4), 403–412 (2006). https://doi.org/10.1049/ip-cta:20050178

    Article  Google Scholar 

  12. A. Sajid, H. Abbas, and K. Saleem, “Cloud-Assisted IoT-Based SCADA Systems Security: A Review of the State of the Art and Future Challenges,” IEEE Access, vol. 4. Institute of Electrical and Electronics Engineers Inc., pp. 1375–1384, 2016. https://doi.org/10.1109/ACCESS.2016.2549047.

  13. R. Hunzinger, “SCADA fundamentals and applications in the IoT,” in Internet of Things and Data Analytics Handbook, Hoboken, NJ, USA: wiley, 2017, pp. 283–293.

    Google Scholar 

  14. R. Scattolini, Architectures for distributed and hierarchical Model Predictive Control—A review. J. Process Control 19(5), 723–731 (2009). https://doi.org/10.1016/j.jprocont.2009.02.003

    Article  Google Scholar 

  15. M. Dotoli, A. Fay, M. Miśkowicz, C. Seatzu, Advanced control in factory automation: a survey. Int. J. Prod. Res. 55(5), 1243–1259 (2017). https://doi.org/10.1080/00207543.2016.1173259

    Article  Google Scholar 

  16. C. Wang, Z. Bi, L. Da Xu, IoT and cloud computing in automation of assembly modeling systems. IEEE Trans. Ind. Informatics 10(2), 1426–1434 (2014). https://doi.org/10.1109/TII.2014.2300346

    Article  Google Scholar 

  17. B. Hayes, Cloud Computing. Commun. ACM 51(7), 9–11 (2008). https://doi.org/10.1145/1364782.1364786

    Article  Google Scholar 

  18. L. Zhang, Y. Luo, F. Tao, B.H. Li, L. Ren, X. Zhang, H. Guo, Y. Cheng, A. Hu, Y. Liu, Cloud manufacturing: a new manufacturing paradigm. Enterp. Inf. Syst. 8(2), 167–187 (2014). https://doi.org/10.1080/17517575.2012.683812

    Article  Google Scholar 

  19. X.V. Wang, L. Wang, A. Mohammed, M. Givehchi, Ubiquitous manufacturing system based on Cloud: A robotics application. Robot. Comput. Integr. Manuf. 45, 116–125 (2017). https://doi.org/10.1016/j.rcim.2016.01.007

    Article  Google Scholar 

  20. A.W. Colombo, R. Schoop, R. Neubert, An agent-based intelligent control platform for industrial holonic manufacturing systems. IEEE Trans. Ind. Electron. 53(1), 322–337 (2006). https://doi.org/10.1109/TIE.2005.862210

    Article  Google Scholar 

  21. X. V. Wang, Zs. Kemény, J. Váncza, and L. Wang, “Human–robot collaborative assembly in cyber-physical production: Classification framework and implementation,” CIRP Ann.—Manuf. Technol., vol. 66, no. 1, pp. 5–8, 2017, doi: https://doi.org/10.1016/j.cirp.2017.04.101.

  22. A.-W. Scheer, “Industrie 4.0 – Wie sehen Produktionsprozesse im Jahr 2020 aus?,” IMC Verlag, 2013.

    Google Scholar 

  23. P. Zheng, Z. Sang, R.Y. Zhong, Y. Liu, C. Liu, K. Mubarok, S. Yu, X. Xu., “Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives,” Front. Mech. Eng., vol. 13, no. 2, pp. 137–150, 2018, doi: https://doi.org/10.1007/s11465-018-0499-5.

  24. D. Mourtzis, E. Vlachou, A cloud-based cyber-physical system for adaptive shop-floor scheduling and condition-based maintenance. J. Manuf. Syst. 47, 179–198 (2018). https://doi.org/10.1016/j.jmsy.2018.05.008

    Article  Google Scholar 

  25. P. Senra, I. Lopes, J.A. Oliveira, Supporting Maintenance Scheduling: A Case Study. Procedia Manuf. 11, 2123–2130 (2017). https://doi.org/10.1016/j.promfg.2017.07.342

    Article  Google Scholar 

  26. O.F. Valilai, M. Houshmand, A collaborative and integrated platform to support distributed manufacturing system using a service-oriented approach based on cloud computing paradigm. Robot. Comput. Integr. Manuf. 29(1), 110–127 (2013). https://doi.org/10.1016/j.rcim.2012.07.009

    Article  Google Scholar 

  27. Y. Zhang, G. Zhang, Y. Liu, D. Hu, Research on services encapsulation and virtualization access model of machine for cloud manufacturing. J. Intell. Manuf. 28(5), 1109–1123 (2017). https://doi.org/10.1007/s10845-015-1064-2

    Article  Google Scholar 

  28. A. Brant, M.M. Sundaram, A novel system for cloud-based micro additive manufacturing of metal structures. J. Manuf. Process. 20, 478–484 (2015). https://doi.org/10.1016/j.jmapro.2015.06.020

    Article  Google Scholar 

  29. T. Chen, Y.C. Lin, A digital equipment identifier system. J. Intell. Manuf. 28(5), 1159–1169 (2017). https://doi.org/10.1007/s10845-015-1071-3

    Article  Google Scholar 

  30. F. Xiang, Y. Hu, Y. Yu, H. Wu, QoS and energy consumption aware service composition and optimal-selection based on Pareto group leader algorithm in cloud manufacturing system. Cent. Eur. J. Oper. Res. 22(4), 663–685 (2014). https://doi.org/10.1007/s10100-013-0293-8

    Article  MATH  Google Scholar 

  31. L. Wang, X.V. Wang, “Cloud Robotics Towards a CPS Assembly System”, in Cloud-Based Cyber-Physical Systems in Manufacturing (Springer International Publishing, Cham, 2018), pp. 243–259

    Book  Google Scholar 

  32. ISA95, Enterprise-Control System Integration—ISA. Retrieved March 30, 2020, from https://www.isa.org/isa95/

  33. L. Wang, “Cyber Manufacturing: Research and Applications,” TMCE, no. May 2014, pp. 39–49, 2014.

    Google Scholar 

  34. X. Wang, X. Xu, Virtualise manufacturing capabilities in the cloud: Requirements, architecture and implementation. Int. J. Manuf. Res. 9(4), 348–368 (2014). https://doi.org/10.1504/IJMR.2014.066665

    Article  Google Scholar 

  35. N. Nikolakis, R. Senington, K. Sipsas, A. Syberfeldt, and S. Makris, “On a containerized approach for the dynamic planning and control of a cyber-physical production system,” Robot. Comput. Integr. Manuf., 64(Aug. 2020), 101919, 2020, doi: https://doi.org/10.1016/j.rcim.2019.101919.

  36. Cs. Kardos, A. Kovács, and J. Váncza, “Decomposition approach to optimal feature-based assembly planning,” CIRP Ann.—Manuf. Technol., vol. 66, no. 1, pp. 417–420, Jan. 2017, doi: https://doi.org/10.1016/j.cirp.2017.04.002.

  37. C. Bikas, A. Argyrou, G. Pintzos, C. Giannoulis, K. Sipsas, N. Papakostas, G. Chryssolouris, An Automated Assembly Process Planning System. Procedia CIRP 44, 222–227 (2016). https://doi.org/10.1016/j.procir.2016.02.085

    Article  Google Scholar 

  38. G. Chryssolouris, K. Dicke, M. Lee, An approach to short interval scheduling for discrete parts manufacturing. Int. J. Comput. Integr. Manuf. 4(3), 157–168 (1991). https://doi.org/10.1080/09511929108944491

    Article  Google Scholar 

  39. K. Efthymiou, A. Pagoropoulos, and D. Mourtzis, “Intelligent scheduling for manufacturing systems: A case study,” in Lecture Notes in Mechanical Engineering, vol. 7, 2013, pp. 1153–1164.

    Google Scholar 

  40. N. Nikolakis, K. Sipsas, S. Makris, A cyber-physical context-aware system for coordinating human–robot collaboration. Procedia CIRP 72, 27–32 (2018). https://doi.org/10.1016/j.procir.2018.03.033

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotiris Makris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikolakis, N., Sipsas, K., Makris, S. (2021). Cockpit: A Portal for Symbiotic Human–Robot Collaborative Assembly. In: Wang, L., Wang, X.V., Váncza, J., Kemény, Z. (eds) Advanced Human-Robot Collaboration in Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-69178-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69178-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69177-6

  • Online ISBN: 978-3-030-69178-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics