Skip to main content

Resource Availability and Capability Monitoring

  • Chapter
  • First Online:
Advanced Human-Robot Collaboration in Manufacturing

Abstract

In a manufacturing system, resources refer to all required items for a production order to be successfully fulfilled. Their effective management can be directly associated with the production supervision and control, affecting the responsiveness, flexibility and thus effectiveness of the entire manufacturing system. As production systems are increasingly incorporating a variety of heterogeneous resources, such as robots operating in the same space with human operators, conventional approaches of production supervision and control are becoming less effective, with an emerging need for smarter approaches and techniques. In particular, production planning, including the allocation of production activities to resources, primarily based on their availability and capabilities, cannot demonstrate increased flexibility and adaptability to changing working conditions, with an impact to the overall system. Nevertheless, the advances in the field of information and communication technologies hold the promise of enabling increased data collection which in turn can create insight over the production operations. Such insight can enable the creation of smart and self-adaptable applications on the shop floor enabling a smart manufacturing system in which humans may operate smoothly with automation systems. In this context, and with focus on a human–robot collaborative manufacturing paradigm, this chapter deals with the effective monitoring of shop floor operating resources via data acquired from their production environment and towards effectively monitoring their availability. This is achieved by means of contextual information generation from raw data which in turn facilitates seamless human–robot collaboration. The concept of a context-aware monitoring system is presented along with a prototype software implementation. Context drives the use of smart services both for monitoring and supervision purposes, as well as for enabling smart control and production planning. Finally, a use case is presented to demonstrate the proposed approach along with the implemented prototype, concluding with future research directions as well as identified challenges towards smart monitoring for hybrid and flexible production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Cohen, M. Faccio, F. Pilati, X. Yao, Design and management of digital manufacturing and assembly systems in the Industry 4.0 Era. Int. J. Adv. Manuf. Technol. 105(9), 3565–3577 (2019). https://doi.org/10.1007/s00170-019-04595-0

    Article  Google Scholar 

  2. L. Wang, X.V. Wang, L. Wang, X.V. Wang, Latest advancement in CPS and IoT applications. Cloud-Based Cyber-Phys. Syst. Manuf. 33–61 (2018). https://doi.org/10.1007/978-3-319-67693-7_2

  3. L. Zhang, Y. Luo, F. Tao, B.H. Li, L. Ren, X. Zhang, H. Guo, Y. Cheng, A. Hu, Y. Liu, Cloud manufacturing: a new manufacturing paradigm. Enterp. Inf. Syst. 8(2), 167–187 (2014). https://doi.org/10.1080/17517575.2012.683812

    Article  Google Scholar 

  4. E. Rauch, C. Linder, P. Dallasega, Anthropocentric perspective of production before and within industry 4.0. Comput. Ind. Eng. 105644 (2019). https://doi.org/10.1016/j.cie.2019.01.018.

  5. P. Leitão, A.W. Colombo, S. Karnouskos, Industrial automation based on cyber-physical systems technologies: prototype implementations and challenges. Comput. Ind. 81, 11–25 (2016). https://doi.org/10.1016/j.compind.2015.08.004

    Article  Google Scholar 

  6. J. Krüger, T.K. Lien, A. Verl, Cooperation of human and machines in assembly lines, CIRP Ann. Manuf. Technol. 58(2), 628–646 (2009). https://doi.org/10.1016/j.cirp.2009.09.009.

  7. G. Chryssolouris, Manufacturing Systems: theory and Practice, 2nd edn. (Springer, 2006)

    Google Scholar 

  8. K. Alexopoulos, S. Makris, V. Xanthakis, K. Sipsas, G. Chryssolouris, A concept for context-aware computing in manufacturing: the white goods case. Int. J. Comput. Integr. Manuf. 29(8), 839–849 (2016). https://doi.org/10.1080/0951192X.2015.1130257

    Article  Google Scholar 

  9. N. Tapoglou, J. Mehnen, A. Vlachou, M. Doukas, N. Milas, D. Mourtzis, Cloud-based platform for optimal machining parameter selection based on function blocks and real-time monitoring. J. Manuf. Sci. Eng. Trans. ASME 137(4) (2015). https://doi.org/10.1115/1.4029806

  10. D. Mourtzis, N. Milas, A. Vlachou, An internet of things-based monitoring system for shop floor control. J. Comput. Inf. Sci. Eng. 18(2) (2018). https://doi.org/10.1115/1.4039429

  11. B. Bordel, R. Alcarria, T. Robles, D. Martín, Cyber-physical systems: extending pervasive sensing from control theory to the internet of things. Pervasive Mob. Comput. 40, 156–184 (2017). https://doi.org/10.1016/j.pmcj.2017.06.011

    Article  Google Scholar 

  12. L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart, O. Sauer, G. Schuh, W. Sihn, K. Ueda, Cyber-physical systems in manufacturing. CIRP Ann. 65(2), 621–641 (2016). https://doi.org/10.1016/j.cirp.2016.06.005

    Article  Google Scholar 

  13. H. Liu, H. Ning, Q. Mu, Y. Zheng, J. Zeng, L.T. Yang, R. Huang, J. Ma, A review of the smart world. Futur. Gener. Comput. Syst. 96, 678–691 (2019). https://doi.org/10.1016/j.future.2017.09.010

    Article  Google Scholar 

  14. J. Krüger, L. Wang, A. Verl, T. Bauernhansl, E. Carpanzano, S. Makris, J. Fleischer, G. Reinhart, J. Franke, S. Pelegrinelli, Innovative control of assembly systems and lines. CIRP Ann. 66(2), 707–730 (2017). https://doi.org/10.1016/j.cirp.2017.05.010

    Article  Google Scholar 

  15. B. Sencer, C. Okwudire, Control, in CIRP Encyclopedia of Production Engineering (Springer, Berlin, Heidelberg, 2014), pp. 281–285

    Google Scholar 

  16. G. Maione, D. Naso, Using a discrete-event system formalism for the multi-agent control of manufacturing systems, in Informatics in Control, Automation and Robotics I (Dordrecht, Kluwer Academic Publishers, 2006), pp. 125–132

    Google Scholar 

  17. X.V. Wang, Zs. Kemény, J. Váncza, L. Wang, Human–robot collaborative assembly in cyber-physical production: classification framework and implementation. CIRP Ann. Manuf. Technol. 66(1), 5–8 (2017). https://doi.org/10.1016/j.cirp.2017.04.101

  18. L. Wang, R. Gao, J. Váncza, J. Krüger, X.V. Wang, S. Makris, G. Chryssolouris, Symbiotic human–robot collaborative assembly. CIRP Ann. 68(2), 701–726 (2019). https://doi.org/10.1016/j.cirp.2019.05.002

    Article  Google Scholar 

  19. Y. Zhang, P. Jiang, G. Huang, T. Qu, G. Zhou, J. Hong, RFID-enabled real-time manufacturing information tracking infrastructure for extended enterprises. J. Intell. Manuf. 23(6), 2357–2366 (2012). https://doi.org/10.1007/s10845-010-0475-3

    Article  Google Scholar 

  20. H. Sun, P. Jiang, Study on manufacturing information sharing and tracking for extended enterprises. Int. J. Adv. Manuf. Technol. 34(7–8), 790–798 (2007). https://doi.org/10.1007/s00170-006-0637-9

    Article  Google Scholar 

  21. H. Yue, K. Xing, H. Hu, W. Wu, H. Su, Resource failure and buffer space allocation control for automated manufacturing systems. Inf. Sci. (Ny) 450, 392–408 (2018). https://doi.org/10.1016/j.ins.2018.02.043

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Chen, Z. Li, A. Al-Ahmari, N. Wu, T. Qu, Deadlock recovery for flexible manufacturing systems modeled with Petri nets. Inf. Sci. (Ny) 381, 290–303 (2017). https://doi.org/10.1016/J.INS.2016.11.011

    Article  MathSciNet  MATH  Google Scholar 

  23. M.P. Cabasino, A. Giua, M. Pocci, C. Seatzu, Discrete event diagnosis using labeled Petri nets. An application to manufacturing systems. Control Eng. Pract. 19(9), 989–1001 (2011). https://doi.org/10.1016/j.conengprac.2010.12.010

    Article  Google Scholar 

  24. P. Berruet, A.K.A. Toguyeni, S. Elkhattabi, E. Craye, Toward an implementation of recovery procedures for flexible manufacturing systems supervision. Comput. Ind. 43(3), 227–236 (2000). https://doi.org/10.1016/S0166-3615(00)00068-3

    Article  Google Scholar 

  25. C. Qian, Y. Zhang, C. Jiang, S. Pan, Y. Rong, A real-time data-driven collaborative mechanism in fixed-position assembly systems for smart manufacturing. Robot. Comput. Integr. Manuf. 61, 101841 (2020). https://doi.org/10.1016/j.rcim.2019.101841

    Article  Google Scholar 

  26. S. Răileanu, F. Anton, T. Borangiu, High availability cloud manufacturing system integrating distributed MES agents, in Studies in Computational Intelligence, vol. 694 (Springer, Cham, 2017), pp. 11–23

    Google Scholar 

  27. O. Morariu, C. Morariu, T. Borangiu, shop floor resource virtualization layer with private cloud support. J. Intell. Manuf. 27(2), 447–462 (Apr. 2016). https://doi.org/10.1007/s10845-014-0878-7

    Article  Google Scholar 

  28. L. Garber, Robot OS: a new day for robot design. Computer (Long. Beach. Calif) 46(12), 16–20 (2013). https://doi.org/10.1109/MC.2013.434

  29. A. Argyrou, C. Giannoulis, A. Sardelis, P. Karagiannis, G. Michalos, S. Makris, A data fusion system for controlling the execution status in human–robot collaborative cells. Procedia CIRP 76, 193–198 (2018). https://doi.org/10.1016/j.procir.2018.01.012

    Article  Google Scholar 

  30. H. Liu, L. Wang, Remote human–robot collaboration: a cyber-physical system application for hazard manufacturing environment. J. Manuf. Syst. 54, 24–34 (Jan. 2020). https://doi.org/10.1016/j.jmsy.2019.11.001

    Article  Google Scholar 

  31. M. Urgo, M. Tarabini, T. Tolio, A human modelling and monitoring approach to support the execution of manufacturing operations. CIRP Ann. 68(1), 5–8 (Jan. 2019). https://doi.org/10.1016/j.cirp.2019.04.052

    Article  Google Scholar 

  32. A. Bilberg, A.A. Malik, Digital twin driven human–robot collaborative assembly. CIRP Ann. 68(1), 499–502 (2019). https://doi.org/10.1016/j.cirp.2019.04.011

    Article  Google Scholar 

  33. V. Vyatkin, Software engineering in industrial automation: state-of-the-art review. IEEE Trans. Ind. Inform. 9(3), 1234–1249 (2013). https://doi.org/10.1109/TII.2013.2258165

    Article  Google Scholar 

  34. B. Yao, Z. Zhou, L. Wang, W. Xu, J. Yan, Q. Liu, A function block based cyber-physical production system for physical human–robot interaction. J. Manuf. Syst. 48, 12–23 (2018). https://doi.org/10.1016/j.jmsy.2018.04.010

    Article  Google Scholar 

  35. S. Scholze, J. Barata, D. Stokic, Holistic context-sensitivity for run-time optimization of flexible manufacturing systems. Sensors (Switzerland) 17(3) (2017). https://doi.org/10.3390/s17030455

  36. K. Alexopoulos, S. Makris, V. Xanthakis, K. Sipsas, A. Liapis, G. Chryssolouris, Towards a role-centric and context-aware information distribution system for manufacturing. Procedia CIRP 25(C), 377–384 (2014). https://doi.org/10.1016/j.procir.2014.10.052

  37. A.K. Dey, A.K. Dey, G.D. Abowd, Towards a better understanding of context and context-awareness, in HUC ’99 Proceedings of the 1ST International Symposium on Handheld Ubiquitous Computer (1999), pp. 304–307

    Google Scholar 

  38. G.D. Abowd, A.K. Dey, P.J. Brown, N. Davies, M. Smith, P. Steggles, Towards a better understanding of context and context-awareness, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 1707 (Springer, Berlin, Heidelberg, 1999), pp. 304–307

    Google Scholar 

  39. Y. Xu, F.Y. Xu, Research on context modeling based on ontology, in CIMCA 2006: International Conference on Computational Intelligence for Modelling, Control and Automation, Jointly with IAWTIC 2006: International Conference on Intelligent Agents Web Technologies (2007), pp. 188–188. https://doi.org/10.1109/CIMCA.2006.181

  40. J. Indulska, P. Sutton, C. Johnson, P. Montague, C. Steketee, Context-aware, ambient, pervasive and ubiquitous computing. Comput. Sci. ACSW 2003 21 (2003)

    Google Scholar 

  41. M. Bazire, P. Brézillon, Understanding context before using it, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3554 (LNAI, Springer, Berlin, Heidelberg, 2005), pp. 29–40

    Google Scholar 

  42. S. van Engelenburg, M. Janssen, B. Klievink, Designing context-aware systems: a method for understanding and analysing context in practice. J. Log. Algebr. Methods Program. 103, 79–104 (2019). https://doi.org/10.1016/j.jlamp.2018.11.003

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Baldauf, S. Dustdar, F. Rosenberg, A survey on context-aware systems. Int. J. Ad Hoc Ubiquitous Comput. 2(4), 263–277 (2007). https://doi.org/10.1504/IJAHUC.2007.014070

    Article  Google Scholar 

  44. J.-Y. Hong, E.-H. Suh, S.-J. Kim, Context-aware systems: a literature review and classification. Expert Syst. Appl. 36(4), 8509–8522 (2009). https://doi.org/10.1016/j.eswa.2008.10.071

    Article  Google Scholar 

  45. P. Prekop, M. Burnett, Activities, context and ubiquitous computing. Comput. Commun. 26(11), 1168–1176 (2003). https://doi.org/10.1016/S0140-3664(02)00251-7

    Article  Google Scholar 

  46. C. Herrmann, S.H. Suh, G. Bogdanski, A. Zein, J.M. Cha, J. Um, S. Jeong, A. Guzman, Context-aware analysis approach to enhance industrial smart metering, in Glocalized Solutions for Sustainability in Manufacturing (Springer, Berlin, Heidelberg, 2011), pp. 323–328

    Google Scholar 

  47. T. Strang, C. Linnhoff-Popien, A context modeling survey,” Work. Adv. Context Model. Reason. Manag. UbiComp 2004—Sixth Int. Conf. Ubiquitous Comput., vol. Workshop o, no. 4, pp. 1–8, 2004, doi: 10.1.1.2.2060.

    Google Scholar 

  48. C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan, D. Riboni, A survey of context modelling and reasoning techniques. Pervasive Mob. Comput. 6(2), 161–180 (2010). https://doi.org/10.1016/j.pmcj.2009.06.002

    Article  Google Scholar 

  49. S. Scholze, D. Stokic, J. Barata, C. Decker, Context extraction for self-learning production systems, in IEEE International Conference on Industrial Informatics (INDIN) (2012), pp. 809–814. https://doi.org/10.1109/INDIN.2012.6301132

  50. M.K. Uddin, J. Puttonen, S. Scholze, A. Dvoryanchikova, J.L. Martinez Lastra, Ontology-based context-sensitive computing for FMS optimization. Assem. Autom. 32(2), 163–174 (2012). https://doi.org/10.1108/01445151211212316

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Nikolakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikolakis, N., Alexopoulos, K., Sipsas, K. (2021). Resource Availability and Capability Monitoring. In: Wang, L., Wang, X.V., Váncza, J., Kemény, Z. (eds) Advanced Human-Robot Collaboration in Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-69178-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69178-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69177-6

  • Online ISBN: 978-3-030-69178-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics