Skip to main content

Abstract

Arsenic (As), one of the highest harmful pollutants found in drinking/groundwater, is owing to have unfavourable impacts, for example, skin disease, on human health. The new Environmental Protection Agency (EPA) assigned the maximum contaminations of arsenic in groundwater is 10μg/L, and several drinking water plants are needing extra treatment to accomplish this standard. In recent years, several researchers have been attempting to discover practical and expendable adsorbents for some water filtration systems that are utilized in many arsenic endemic territories. Metal oxide-based adsorbents had been proved to be the best strategies for arsenic expulsion/removal. This chapter reviews the removal of both arsenite (As III) and arsenate (As V) species from drinking/groundwater. Also, we give an overview of traditionally applied strategies to expel both arsenic species to incorporate coagulation-flocculation, oxidation, and membrane techniques. More focus has been given to adsorption methods, type of adsorption and factors affecting adsorption. Moreover, brief summary has been given for an advancement on the efficacy of different nanomaterials and composites for the polluted water treatment. A basic examination of the most generally explored nanomaterials is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdus-Salam N, Adekola F (2005) The influence of pH and adsorbent concentration on adsorption of lead and zinc on a natural goethite. Afr J Sci Technol 6:55

    Google Scholar 

  • Adepoju-Bello AA, Alabi O (2005) Heavy metals: a review. Nig J Pharm 37:41–45

    Google Scholar 

  • Adepoju-Bello A, Ojomolade O, Ayoola G, Coker H (2009) Quantitative analysis of some toxic metals in domestic water obtained from Lagos metropolis. Nig J Pharm 42:57–60

    Google Scholar 

  • Adewole AT (2009) Waste management towards sustainable development in Nigeria: a case study of Lagos state. Int NGO J 4:173–179

    Google Scholar 

  • Adeyemi O, Oloyede O, Oladiji A (2007) Physicochemical and microbial characteristics of leachate-contaminated groundwater. Asian J Biochem 2:343–348

    Article  CAS  Google Scholar 

  • Ahmed MF (2001) An overview of arsenic removal technologies in Bangladesh and India. In: Proceedings of BUET-UNU international workshop on technologies for arsenic removal from drinking water, Dhaka, pp 5–7

    Google Scholar 

  • Altundoğan HS, Altundoğan S, Tümen F, Bildik M (2000) Arsenic removal from aqueous solutions by adsorption on red mud. Waste Manag 20:761–767

    Article  Google Scholar 

  • Andjelkovic I, Tran DNH, Kabiri S, Azari S, Markovic M, Losic D (2015) Graphene aerogels decorated with alpha-FeOOH nanoparticles for efficient adsorption of arsenic from contaminated waters. ACS Appl Mater Interfaces 7:9758–9766. https://doi.org/10.1021/acsami.5b01624

    Article  CAS  Google Scholar 

  • Anjum A, Lokeswari P, Kaur M, Datta M (2011) Removal of As (III) from aqueous solutions using montmorillonite. J Anal Sci Methods Instrum 1:25

    CAS  Google Scholar 

  • Bakare-Odunola M (2005) Determination of some metallic impurities present in soft drinks marketed in Nigeria. Nig J Pharm 4:51–54

    Google Scholar 

  • Baldwin DR, Marshall WJ (1999) Heavy metal poisoning and its laboratory investigation. Ann Clin Biochem 36:267–300

    Article  CAS  Google Scholar 

  • Bang S, Patel M, Lippincott L, Meng X (2005) Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere 60:389–397

    Article  CAS  Google Scholar 

  • Bansal RC, Goyal M (2005) Activated carbon adsorption. CRC press

    Google Scholar 

  • Basu A, Saha D, Saha R, Ghosh T, Saha B (2014) A review on sources, toxicity and remediation technologies for removing arsenic from drinking water. Res Chem Intermed 40:447–485

    Article  CAS  Google Scholar 

  • Benders R (2012) National institute for public health and environmental protection (RIVM). Integr Electr Resour Plan 261:123

    Google Scholar 

  • Benjamin MM (2014) Water chemistry. Waveland Press, Long Grove

    Google Scholar 

  • Benjwal P, Kumar M, Chamoli P, Kar KK (2015) Enhanced photocatalytic degradation of methylene blue and adsorption of arsenic(III) by reduced graphene oxide (rGO)-metal oxide (TiO2/Fe3O4) based nanocomposites. RSC Adv 5:73249–73260. https://doi.org/10.1039/c5ra13689j

    Article  CAS  Google Scholar 

  • Beolchini F, Pagnanelli F, De Michelis I, Vegliò F (2007) Treatment of concentrated arsenic (V) solutions by micellar enhanced ultrafiltration with high molecular weight cut-off membrane. J Hazard Mater 148:116–121

    Article  CAS  Google Scholar 

  • Bhardwaj V, Mirliss MJ (2005) Diatomaceous Earth filtration for drinking water. Water Encycl 1:174–177

    Google Scholar 

  • Bottino A, Capannelli G, Comite A, Ferrari F, Firpo R, Venzano S (2009) Membrane technologies for water treatment and agroindustrial sectors. C R Chim 12:882–888

    Article  CAS  Google Scholar 

  • Boujelben N, Bouzid J, Elouear Z, Feki M (2010) Retention of nickel from aqueous solutions using iron oxide and manganese oxide coated sand: kinetic and thermodynamic studies. Environ Technol 31:1623–1634

    Article  CAS  Google Scholar 

  • Brandhuber P, Amy G (1998) Alternative methods for membrane filtration of arsenic from drinking water. Desalination 117:1–10

    Article  CAS  Google Scholar 

  • Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29:2587–2595

    Article  CAS  Google Scholar 

  • Calder L (1988) Chromium contamination of groundwater. In: Advances in environmental science and technology (USA). Wiley, New York

    Google Scholar 

  • Carabante I (2012) Arsenic (V) adsorption on iron oxide: implications for soil remedeation and water purification. Thesis, Luleå tekniska universitet

    Google Scholar 

  • Chandler BD, Cramb DT, Shimizu GK (2006) Microporous metal− organic frameworks formed in a stepwise manner from luminescent building blocks. J Am Chem Soc 128:10403–10412

    Article  CAS  Google Scholar 

  • Chandra V, Park J, Chun Y, Lee JW, Hwang I-C, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986

    Article  CAS  Google Scholar 

  • Chang Y-C, Chen D-H (2005) Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions. J Colloid Interface Sci 283:446–451

    Article  CAS  Google Scholar 

  • Chen B, Wang L, Zapata F, Qian G, Lobkovsky EB (2008) A luminescent microporous metal− organic framework for the recognition and sensing of anions. J Am Chem Soc 130:6718–6719

    Article  CAS  Google Scholar 

  • Chen ML, Sun Y, Huo CB, Liu C, Wang JH (2015) Akaganeite decorated graphene oxide composite for arsenic adsorption/removal and its proconcentration at ultra-trace level. Chemosphere 130:52–58. https://doi.org/10.1016/j.chemosphere.2015.02.046

    Article  CAS  Google Scholar 

  • Cheng RC, Liang S, Wang HC, Beuhler MD (1994) Enhanced coagulation for arsenic removal. J Am Water Works Assoc 86:79–90

    Article  CAS  Google Scholar 

  • Chiban M, Zerbet M, Carja G, Sinan F (2012) Application of low-cost adsorbents for arsenic removal: a review. J Environ Chem Ecotoxicol 4:91–102

    Google Scholar 

  • Choong TS, Chuah T, Robiah Y, Koay FG, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217:139–166

    Article  CAS  Google Scholar 

  • Chowdhury SR, Yanful EK (2011) Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles. Water Environ J 25:429–437

    Article  Google Scholar 

  • Chowdhury S, Chakraborty S, Saha PD (2013) Response surface optimization of a dynamic dye adsorption process: a case study of crystal violet adsorption onto NaOH-modified rice husk. Environ Sci Pollut Res 20:1698–1705

    Article  CAS  Google Scholar 

  • Cui H, Li Q, Gao S, Shang JK (2012) Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J Ind Eng Chem 18:1418–1427

    Article  CAS  Google Scholar 

  • Cui H, Su Y, Li Q, Gao S, Shang JK (2013) Exceptional arsenic (III, V) removal performance of highly porous, nanostructured ZrO2 spheres for fixed bed reactors and the full-scale system modeling. Water Res 47:6258–6268

    Article  CAS  Google Scholar 

  • De Anil K (2003) Environmental chemistry. New Age International, New Delhi

    Google Scholar 

  • Deedar N, Aslam I (2009) Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. J Environ Sci 21:402–408

    Article  CAS  Google Scholar 

  • Deliyanni E, Bakoyannakis D, Zouboulis A, Matis K (2003) Sorption of As (V) ions by akaganeite-type nanocrystals. Chemosphere 50:155–163

    Article  CAS  Google Scholar 

  • Do DD (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press, London

    Book  Google Scholar 

  • Dodd MC, Vu ND, Ammann A, Le VC, Kissner R, Pham HV, Cao TH, Berg M, Von Gunten U (2006) Kinetics and mechanistic aspects of As (III) oxidation by aqueous chlorine, chloramines, and ozone: relevance to drinking water treatment. Environ Sci Technol 40:3285–3292

    Article  CAS  Google Scholar 

  • Dubey SP, Nguyen TT, Kwon Y-N, Lee C (2015) Synthesis and characterization of metal-doped reduced graphene oxide composites, and their application in removal of Escherichia coli, arsenic and 4-nitrophenol. J Ind Eng Chem 29:282

    Article  CAS  Google Scholar 

  • Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’keeffe M, Yaghi OM (2001) Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal− organic carboxylate frameworks. Acc Chem Res 34:319–330

    Article  CAS  Google Scholar 

  • Edition F (2011) Guidelines for drinking-water quality. WHO Chron 38:104–108

    Google Scholar 

  • Eren E, Tabak A, Eren B (2010) Performance of magnesium oxide-coated bentonite in removal process of copper ions from aqueous solution. Desalination 257:163–169

    Article  CAS  Google Scholar 

  • Fauci A, Braunwald E, Isselbacher K, Wilson J, Martin J, Kasper D, Hauser S, Longo D (1998) Heavy Metal poisoning, principal of international medicine Harrison, vol 2. McGraw-Hill, New York, pp 2565–2566

    Google Scholar 

  • Faust SD, Aly OM (2018) Chemistry of water treatment. CRC Press, Boca Raton

    Google Scholar 

  • Feng Q, Zhang Z, Ma Y, He X, Zhao Y, Chai Z (2012) Adsorption and desorption characteristics of arsenic onto ceria nanoparticles. Nanoscale Res Lett 7:84

    Article  CAS  Google Scholar 

  • Figoli A, Cassano A, Criscuoli A, Mozumder MSI, Uddin MT, Islam MA, Drioli E (2010) Influence of operating parameters on the arsenic removal by nanofiltration. Water Res 44:97–104

    Article  CAS  Google Scholar 

  • Fred Lee G, Jones-Lee A (2005) Municipal solid waste landfills—water quality issues. Water Encycl 2:163–169

    Google Scholar 

  • Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428

    Article  CAS  Google Scholar 

  • Garelick H, Dybowska A, Valsami-Jones E, Priest N (2005) Remediation technologies for arsenic contaminated drinking waters (9 pp). J Soils Sediments 5:182–190

    Article  CAS  Google Scholar 

  • Gecol H, Ergican E, Fuchs A (2004) Molecular level separation of arsenic (V) from water using cationic surfactant micelles and ultrafiltration membrane. J Membr Sci 241:105–119

    Article  CAS  Google Scholar 

  • Giles DE, Mohapatra M, Issa TB, Anand S, Singh P (2011) Iron and aluminium based adsorption strategies for removing arsenic from water. J Environ Manag 92:3011–3022

    Article  CAS  Google Scholar 

  • Guan X, Du J, Meng X, Sun Y, Sun B, Hu Q (2012) Application of titanium dioxide in arsenic removal from water: a review. J Hazard Mater 215:1–16

    Article  CAS  Google Scholar 

  • Guo X, Chen F (2005) Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environ Sci Technol 39:6808–6818

    Article  CAS  Google Scholar 

  • Guo H, Stüben D, Berner Z (2007) Adsorption of arsenic (III) and arsenic (V) from groundwater using natural siderite as the adsorbent. J Colloid Interface Sci 315:47–53

    Article  CAS  Google Scholar 

  • Guo L, Ye P, Wang J, Fu F, Wu Z (2015) Three-dimensional Fe 3 O 4-graphene macroscopic composites for arsenic and arsenate removal. J Hazard Mater 298:28–35

    Article  CAS  Google Scholar 

  • Gupta BS, Chatterjee S, Rott U, Kauffman H, Bandopadhyay A, DeGroot W, Nag N, Carbonell-Barrachina A, Mukherjee S (2009) A simple chemical free arsenic removal method for community water supply – a case study from West Bengal, India. Environ Pollut 157:3351–3353

    Article  CAS  Google Scholar 

  • Gupta A, Yunus M, Sankararamakrishnan N (2012) Zerovalent iron encapsulated chitosan nanospheres–A novel adsorbent for the removal of total inorganic Arsenic from aqueous systems. Chemosphere 86:150–155

    Article  CAS  Google Scholar 

  • Habuda-Stanić M, Nujić M (2015) Arsenic removal by nanoparticles: a review. Environ Sci Pollut Res 22:8094–8123

    Article  CAS  Google Scholar 

  • Han B, Runnells T, Zimbron J, Wickramasinghe R (2002) Arsenic removal from drinking water by flocculation and microfiltration. Desalination 145:293–298

    Article  CAS  Google Scholar 

  • Hasan Z, Jhung SH (2015) Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions. J Hazard Mater 283:329–339

    Article  CAS  Google Scholar 

  • He Y, Zhou W, Krishna R, Chen B (2012) Microporous metal–organic frameworks for storage and separation of small hydrocarbons. Chem Commun 48:11813–11831

    Article  CAS  Google Scholar 

  • Hering JG, Chen PY, Wilkie JA, Elimelech M, Liang S (1996) Arsenic removal by ferric chloride. J Am Water Works Assoc 88:155–167

    Article  CAS  Google Scholar 

  • Hering JG, Chen P-Y, Wilkie JA, Elimelech M (1997) Arsenic removal from drinking water during coagulation. J Environ Eng 123:800–807

    Article  CAS  Google Scholar 

  • Hesami F, Bina B, Ebrahimi A, Amin MM (2013) Arsenic removal by coagulation using ferric chloride and chitosan from water. Int J Environ Health Eng 2:17

    Article  CAS  Google Scholar 

  • Ho Y-S, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34:735–742

    Article  CAS  Google Scholar 

  • Hristovski K, Baumgardner A, Westerhoff P (2007) Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media. J Hazard Mater 147:265–274

    Article  CAS  Google Scholar 

  • Hu J, Chen G, Lo IM (2005) Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536

    Article  CAS  Google Scholar 

  • Hu C, Liu H, Chen G, Jefferson WA, Qu J (2012) As (III) oxidation by active chlorine and subsequent removal of As (V) by Al13 polymer coagulation using a novel dual function reagent. Environ Sci Technol 46:6776–6782

    Article  CAS  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331

    Article  CAS  Google Scholar 

  • Hulteen J, Chen H, Chambliss C, Martin C (1997) Template synthesis of carbon nanotubule and nanofiber arrays. Nanostruct Mater 9:133–136

    Article  CAS  Google Scholar 

  • Huong PTL, Huy LT, Phan VN, Huy TQ, Nam MH, Lam VD, Le AT (2016) Application of graphene oxide-MnFe2O4 magnetic nanohybrids as magnetically separable adsorbent for highly efficient removal of arsenic from water. J Electron Mater 45:2372–2380. https://doi.org/10.1007/s11664-015-4314-3

    Article  CAS  Google Scholar 

  • Huxford RC, Della Rocca J, Lin W (2010) Metal–organic frameworks as potential drug carriers. Curr Opin Chem Biol 14:262–268

    Article  CAS  Google Scholar 

  • Igwilo IO, Afonne OJ, Maduabuchi UJ-M, Orisakwe OE (2006) Toxicological study of the Anam river in Otuocha, Anambra state, Nigeria. Arch Environ Occup Health 61:205–208

    Article  CAS  Google Scholar 

  • Iqbal J, Kim H-J, Yang J-S, Baek K, Yang J-W (2007) Removal of arsenic from groundwater by micellar-enhanced ultrafiltration (MEUF). Chemosphere 66:970–976

    Article  CAS  Google Scholar 

  • Jang M, Chen W, Cannon FS (2008) Preloading hydrous ferric oxide into granular activated carbon for arsenic removal. Environ Sci Technol 42:3369–3374

    Article  CAS  Google Scholar 

  • Jia S-Y, Zhang Y-F, Liu Y, Qin F-X, Ren H-T, Wu S-H (2013) Adsorptive removal of dibenzothiophene from model fuels over one-pot synthesized PTA@ MIL-101 (Cr) hybrid material. J Hazard Mater 262:589–597

    Article  CAS  Google Scholar 

  • Jian M, Liu B, Zhang G, Liu R, Zhang X (2015) Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids Surf A Physicochem Eng Asp 465:67–76

    Article  CAS  Google Scholar 

  • Johnston R, Heijnen H, Wurzel P (2001) Safe water technology, technologies for arsenic removal from drinking water, Matiar Manush, Dhaka, Bangladesh, pp 1–98

    Google Scholar 

  • Kamsonlian S, Suresh S, Majumder C, Chand S (2012) Biosorption of arsenic from contaminated water onto solid Psidium guajava leaf surface: equilibrium, kinetics, thermodynamics, and desorption study. Biorem J 16:97–112

    Article  CAS  Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298

    Article  CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2004) Application of biological processes for the removal of arsenic from groundwaters. Water Res 38:17–26

    Article  CAS  Google Scholar 

  • Kikuchi Y, Qian Q, Machida M, Tatsumoto H (2006) Effect of ZnO loading to activated carbon on Pb (II) adsorption from aqueous solution. Carbon 44:195–202

    Article  CAS  Google Scholar 

  • Kim M-J, Nriagu J (2000) Oxidation of arsenite in groundwater using ozone and oxygen. Sci Total Environ 247:71–79

    Article  CAS  Google Scholar 

  • Kumari P, Sharma P, Srivastava S, Srivastava M (2005) Arsenic removal from the aqueous system using plant biomass: a bioremedial approach. J Ind Microbiol Biotechnol 32:521–526

    Article  CAS  Google Scholar 

  • Kurmoo M (2009) Magnetic metal–organic frameworks. Chem Soc Rev 38:1353–1379

    Article  CAS  Google Scholar 

  • Kwok CM (2009) Removal of arsenic from water using chitosan and nanochitosan. Hong Kong University of Science and Technology, Hong Kong

    Book  Google Scholar 

  • Lai C-H, Chen C-Y, Wei B-L, Yeh S-H (2002) Cadmium adsorption on goethite-coated sand in the presence of humic acid. Water Res 36:4943–4950

    Article  CAS  Google Scholar 

  • Lakshmanan D, Clifford D, Samanta G (2008) Arsenic removal by coagulation with aluminum, iron, titanium, and zirconium. J Am Water Works Assoc 100:76–88

    Article  CAS  Google Scholar 

  • Lambrechts C, Woodley B, Church C, Gachanja M (2003) Aerial survey of the destruction of the Aberdare Range forests. Division of Early Warning and Assessment, UNEP

    Google Scholar 

  • Langmi HW, Ren J, North B, Mathe M, Bessarabov D (2014) Hydrogen storage in metal-organic frameworks: a review. Electrochim Acta 128:368–392

    Article  CAS  Google Scholar 

  • Lee B, De Haan M, Reddy S, Martindale A (2004) Evaluation of EBCT on arsenic adsorption performance and competitive preloading. In: Proceedings, AWWA water quality technology conference and exhibition

    Google Scholar 

  • Lee S-H, Kim K-W, Lee B-T, Bang S, Kim H, Kang H, Jang A (2015) Enhanced arsenate removal performance in aqueous solution by yttrium-based adsorbents. Int J Environ Res Public Health 12:13523–13541

    Article  CAS  Google Scholar 

  • Leist M, Casey R, Caridi D (2000) The management of arsenic wastes: problems and prospects. J Hazard Mater 76:125–138

    Article  CAS  Google Scholar 

  • Lenoble V, Bouras O, Deluchat V, Serpaud B, Bollinger J-C (2002) Arsenic adsorption onto pillared clays and iron oxides. J Colloid Interface Sci 255:52–58

    Article  CAS  Google Scholar 

  • Li Y-H, Wang S, Luan Z, Ding J, Xu C, Wu D (2003) Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41:1057–1062

    Article  CAS  Google Scholar 

  • Li R, Li Q, Gao S, Shang JK (2012) Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: Part A. Adsorption capacity and mechanism. Chem Eng J 185:127–135

    Article  CAS  Google Scholar 

  • Lin T-F, Wu J-K (2001) Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics. Water Res 35:2049–2057

    Article  CAS  Google Scholar 

  • Litter MI, Morgada ME, Bundschuh J (2010) Possible treatments for arsenic removal in Latin American waters for human consumption. Environ Pollut 158:1105–1118

    Article  CAS  Google Scholar 

  • Liu YY, Leus K, Grzywa M, Weinberger D, Strubbe K, Vrielinck H, Van Deun R, Volkmer D, Van Speybroeck V, Van Der Voort P (2012) Synthesis, structural characterization, and catalytic performance of a vanadium-based metal–organic framework (COMOC-3). Eur J Inorg Chem 2012:2819–2827

    Article  CAS  Google Scholar 

  • Liu H, Zuo K, Vecitis CD (2014a) Titanium dioxide-coated carbon nanotube network filter for rapid and effective arsenic sorption. Environ Sci Technol 48:13871–13879

    Article  CAS  Google Scholar 

  • Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C-Y (2014b) Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev 43:6011–6061

    Article  CAS  Google Scholar 

  • Logsdon GS, Kohne R, Abel S, LaBonde S (2002) Slow sand filtration for small water systems. J Environ Eng Sci 1:339–348

    Article  CAS  Google Scholar 

  • Lorenzen L, Van Deventer J, Landi W (1995) Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Miner Eng 8:557–569

    Article  CAS  Google Scholar 

  • Low JJ, Benin AI, Jakubczak P, Abrahamian JF, Faheem SA, Willis RR (2009) Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. J Am Chem Soc 131:15834–15842

    Article  CAS  Google Scholar 

  • Lu C, Liu C (2006) Removal of nickel (II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 81:1932–1940

    Article  CAS  Google Scholar 

  • Luo X, Wang C, Luo S, Dong R, Tu X, Zeng G (2012) Adsorption of As (III) and As (V) from water using magnetite Fe 3 O 4-reduced graphite oxide–MnO 2 nanocomposites. Chem Eng J 187:45–52

    Article  CAS  Google Scholar 

  • Luo XB, Wang CC, Wang LC, Deng F, Luo SL, Tu XM, Au CT (2013) Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and As(V) from water. Chem Eng J 220:98–106. https://doi.org/10.1016/j.cej.2013.01.017

    Article  CAS  Google Scholar 

  • Mandal S, Sahu MK, Patel RK (2013) Adsorption studies of arsenic (III) removal from water by zirconium polyacrylamide hybrid material (ZrPACM-43). Water Resour Ind 4:51–67

    Article  Google Scholar 

  • Marcovecchio JE, Botté SE, Freije RH (2007) Heavy metals, major metals, trace elements. Handb Water Anal 2:275–311

    Google Scholar 

  • Margat J, Van der Gun J (2013) Groundwater around the world: a geographic synopsis. CRC Press, Boca Raton/London/New York

    Book  Google Scholar 

  • Martinson CA, Reddy K (2009) Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. J Colloid Interface Sci 336:406–411

    Article  CAS  Google Scholar 

  • Mayo J, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin V (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8:71

    Article  CAS  Google Scholar 

  • McMurry J, Fay R (2004) In: Hamann KP (ed) Hydrogen, oxygen and water, McMurry Fay Chemistry, 4th edn. Pearson Education, Upper Saddle River, pp 575–599

    Google Scholar 

  • Melia O, Coagulation C (1972) In: Weber WJ Jr (ed) Floccula-tion. Physicochemical processes for water quality control. Wiley Interscience, New York

    Google Scholar 

  • Mendie U (2005) The nature of water. In: The theory and practice of clean water production for domestic and industrial use, vol 1. Lacto-Medals Publishers, Lagos, p 21

    Google Scholar 

  • Mishra AK, Ramaprabhu S (2010) Magnetite decorated multiwalled carbon nanotube based supercapacitor for arsenic removal and desalination of seawater. J Phys Chem C 114:2583–2590. https://doi.org/10.1021/jp911631w

    Article  CAS  Google Scholar 

  • Misra, M. & Lenz, P. (2008). Removal of arsenic from drinking and process water: Google Patents.

    Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Mohapatra D, Mishra D, Chaudhury GR, Das RP (2007) Arsenic adsorption mechanism on clay minerals and its dependence on temperature. Korean J Chem Eng 24:426–430

    Article  CAS  Google Scholar 

  • Mohmood I, Lopes CB, Lopes I, Ahmad I, Duarte AC, Pereira E (2013) Nanoscale materials and their use in water contaminants removal—a review. Environ Sci Pollut Res 20:1239–1260

    Article  CAS  Google Scholar 

  • Momodu M, Anyakora C (2010) Heavy metal contamination of ground water: the Surulere case study. Res J Environ Earth Sci 2:39–43

    CAS  Google Scholar 

  • Mondal N, Roy P, Das B, Datta J (2011) Chronic arsenic toxicity and it’s relation with nutritional status: a case study in Purabasthali-II, Burdwan, West Bengal, India. Int J Environ Sci 2:1103–1118

    CAS  Google Scholar 

  • Mondal P, Bhowmick S, Chatterjee D, Figoli A, Van der Bruggen B (2013) Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions. Chemosphere 92:157–170

    Article  CAS  Google Scholar 

  • Moore JW, Ramamoorthy S (2012) Heavy metals in natural waters: applied monitoring and impact assessment. Springer, New York

    Google Scholar 

  • Morgan JJ, Stumm W (1970) Aquatic chemistry. Wiley, New York

    Google Scholar 

  • Namasivayam C, Ranganathan K (1995) Removal of Cd (II) from wastewater by adsorption on “waste” Fe (III) Cr (III) hydroxide. Water Res 29:1737–1744

    Article  CAS  Google Scholar 

  • Nigam S, Gopal K, Vankar PS (2013a) Biosorption of arsenic in drinking water by submerged plant: Hydrilla verticilata. Environ Sci Pollut Res 20:4000–4008

    Article  CAS  Google Scholar 

  • Nigam S, Vankar PS, Gopal K (2013b) Biosorption of arsenic from aqueous solution using dye waste. Environ Sci Pollut Res 20:1161–1172

    Article  CAS  Google Scholar 

  • Ohlinger K, Young TM, Schroeder E (1998) Predicting struvite formation in digestion. Water Res 32:3607–3614

    Article  CAS  Google Scholar 

  • Organization, W. H (2007) Quality assurance of pharmaceuticals: a compendium of guidelines and related materials. Good manufacturing practices and inspection. World Health Organization, Geneva

    Google Scholar 

  • Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013

    Article  CAS  Google Scholar 

  • Pan B, Qiu H, Pan B, Nie G, Xiao L, Lv L, Zhang W, Zhang Q, Zheng S (2010) Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe (III) oxides: behavior and XPS study. Water Res 44:815–824

    Article  CAS  Google Scholar 

  • Pandey PK, Choubey S, Verma Y, Pandey M, Chandrashekhar K (2009) Biosorptive removal of arsenic from drinking water. Bioresour Technol 100:634–637

    Article  CAS  Google Scholar 

  • Peak D, Sparks D (2002) Mechanisms of selenate adsorption on iron oxides and hydroxides. Environ Sci Technol 36:1460–1466

    Article  CAS  Google Scholar 

  • Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X (2005) Adsorption of As (V) and As (III) by nanocrystalline titanium dioxide. Water Res 39:2327–2337

    Article  CAS  Google Scholar 

  • Pennesi C, Vegliò F, Totti C, Romagnoli T, Beolchini F (2012) Nonliving biomass of marine macrophytes as arsenic (V) biosorbents. J Appl Phycol 24:1495–1502

    Article  CAS  Google Scholar 

  • Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44:6532–6549

    Article  CAS  Google Scholar 

  • Pettine M, Campanella L, Millero FJ (1999) Arsenite oxidation by H2O2 in aqueous solutions. Geochim Cosmochim Acta 63:2727–2735

    Article  CAS  Google Scholar 

  • Pontius FW, Association, A. W. W (1990) Water quality and treatment: a handbook of community water supplies. AWWA, Norwich

    Google Scholar 

  • Pous N, Casentini B, Rossetti S, Fazi S, Puig S, Aulenta F (2015) Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: a novel approach to the bioremediation of arsenic-polluted groundwater. J Hazard Mater 283:617–622

    Article  CAS  Google Scholar 

  • Prasad KS, Ramanathan A, Paul J, Subramanian V, Prasad R (2013) Biosorption of arsenite (As+ 3) and arsenate (As+ 5) from aqueous solution by Arthrobacter sp. biomass. Environ Technol 34:2701–2708

    Article  CAS  Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  Google Scholar 

  • Ramos MA, Yan W, Li X-Q, Koel BE, Zhang W-X (2009) Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core− shell structure. J Phys Chem C 113:14591–14594

    Article  CAS  Google Scholar 

  • Ranjan D, Talat M, Hasan S (2009a) Rice polish: an alternative to conventional adsorbents for treating arsenic bearing water by up-flow column method. Ind Eng Chem Res 48:10180–10185

    Article  CAS  Google Scholar 

  • Ranjan D, Talat M, Hasan S (2009b) Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J Hazard Mater 166:1050–1059

    Article  CAS  Google Scholar 

  • Rice EW, Baird RB, Eaton AD, Clesceri LS (2012) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • Roy P, Choudhury M, Ali M (2013a) As (III) and As (V) adsorption on magnetite nanoparticles: adsorption isotherms, effect of ph and phosphate, and adsorption kinetics. Int J Chem Environ Eng 4:55–63

    Google Scholar 

  • Roy P, Mondal NK, Das B, Das K (2013b) Arsenic contamination in groundwater: a statistical modeling. J Urban Environ Eng 7:24–29

    Article  Google Scholar 

  • Roy E, Patra S, Madhuri R, Sharma PK (2016) Europium doped magnetic graphene oxide-MWCNT nanohybrid for estimation and removal of arsenate and arsenite from real water samples. Chem Eng J 299:244–254. https://doi.org/10.1016/j.cej.2016.04.051

    Article  CAS  Google Scholar 

  • Ruthven DM (2006) Adsorption and diffusion. Springer, Berlin, pp 1–43

    Google Scholar 

  • Saiz J, Bringas E, Ortiz I (2014) New functionalized magnetic materials for As5+ removal: adsorbent regeneration and reuse. Ind Eng Chem Res 53:18928–18934

    Article  CAS  Google Scholar 

  • Sakthivel TS, Das S, Pratt CJ, Seal S (2017) One-pot synthesis of a ceria–graphene oxide composite for the efficient removal of arsenic species. Nanoscale 9(10):3367–3374

    Article  CAS  Google Scholar 

  • Salomons W, Förstner U, Mader P (2012) Heavy metals: problems and solutions. Springer, Berlin/Heidelberg

    Google Scholar 

  • Samiey B, Cheng C-H, Wu J (2014) Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: a review. Materials 7:673–726

    Article  CAS  Google Scholar 

  • Sandoval R, Cooper AM, Aymar K, Jain A, Hristovski K (2011) Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles. J Hazard Mater 193:296–303

    Article  CAS  Google Scholar 

  • Sato Y, Kang M, Kamei T, Magara Y (2002) Performance of nanofiltration for arsenic removal. Water Res 36:3371–3377

    Article  CAS  Google Scholar 

  • Sharma SK (2001) Adsorptive iron removal from groundwater. CRC Press, Leiden

    Google Scholar 

  • Sharma R, Al-Busaidi T (2001) Groundwater pollution due to a tailings dam. Eng Geol 60:235–244

    Article  Google Scholar 

  • Sharma S, Petrusevski B, Schippers J (2002) Characterisation of coated sand from iron removal plants. Water Sci Technol Water Supply 2:247–257

    Article  CAS  Google Scholar 

  • Sharma YC, Srivastava V, Singh V, Kaul S, Weng C (2009) Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ Technol 30:583–609

    Article  CAS  Google Scholar 

  • Shen L (2013) Synthesis, characterization and application of metal-organic frameworks. Thesis, University of Illinois at Urbana-Champaign

    Google Scholar 

  • Sheng G, Li Y, Yang X, Ren X, Yang S, Hu J, Wang X (2012) Efficient removal of arsenate by versatile magnetic graphene oxide composites. RSC Adv 2:12400–12407

    Article  CAS  Google Scholar 

  • Shih M-C (2005) An overview of arsenic removal by pressure-drivenmembrane processes. Desalination 172:85–97

    Article  CAS  Google Scholar 

  • Shiklomanov I, Rodde J (2011) Summary of the monograph “world water resources at the beginning of the 21st century” prepared in the framework of ihp unesco

    Google Scholar 

  • Shinde RN, Pandey A, Acharya R, Guin R, Das S, Rajurkar N, Pujari P (2013) Chitosan-transition metal ions complexes for selective arsenic (V) preconcentration. Water Res 47:3497–3506

    Article  CAS  Google Scholar 

  • Singh TS, Pant K (2004) Equilibrium, kinetics and thermodynamic studies for adsorption of As (III) on activated alumina. Sep Purif Technol 36:139–147

    Article  CAS  Google Scholar 

  • Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Sorlini S, Gialdini F (2010) Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine. Water Res 44:5653–5659

    Article  CAS  Google Scholar 

  • Sorlini S, Gialdini F, Stefan M (2014) UV/H 2 O 2 oxidation of arsenic and terbuthylazine in drinking water. Environ Monit Assess 186:1311–1316

    Article  CAS  Google Scholar 

  • Sun Y, Zhou G, Xiong X, Guan X, Li L, Bao H (2013a) Enhanced arsenite removal from water by Ti (SO4) 2 coagulation. Water Res 47:4340–4348

    Article  CAS  Google Scholar 

  • Sun Z, Yu Y, Pang S, Du D (2013b) Manganese-modified activated carbon fiber (Mn-ACF): Novel efficient adsorbent for Arsenic. Appl Surf Sci 284:100–106

    Article  CAS  Google Scholar 

  • Tang SC, Lo IM (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632

    Article  CAS  Google Scholar 

  • Tang W, Li Q, Gao S, Shang JK (2011) Arsenic (III, V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. J Hazard Mater 192:131–138

    CAS  Google Scholar 

  • Tuutijärvi T (2013) Arsenate removal from water by adsorption with magnetic nanoparticles (γ-Fe2O3)

    Google Scholar 

  • Tuutijärvi T, Vahala R, Sillanpää M, Chen G (2012) Maghemite nanoparticles for As (V) removal: desorption characteristics and adsorbent recovery. Environ Technol 33:1927–1936

    Article  CAS  Google Scholar 

  • Uddin MT, Mozumder MSI, Figoli A, Islam MA, Drioli E (2007) Arsenic removal by conventional and membrane technology: an overview. Indian J Chem Technol 14(5):441–450

    CAS  Google Scholar 

  • Ungureanu G, Santos S, Boaventura R, Botelho C (2015) Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. J Environ Manag 151:326–342

    Article  CAS  Google Scholar 

  • Urba J (1985) Impact of domestic and industrial wastes and agricultural activities on ground-water quality. Congr Int Assoc Hydrogeol 18:91–117. IAH

    Google Scholar 

  • Uwamariya V (2013) Adsorptive removal of heavy metals from groundwater by iron oxide based adsorbents. IHE Delft Institute for Water Education

    Google Scholar 

  • Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog 22:46–56

    Article  Google Scholar 

  • VanLoon GW, Duffy SJ (2017) Environmental chemistry: a global perspective. Oxford University Press

    Google Scholar 

  • Veličković ZS, Bajić ZJ, Ristić MĐ, Djokić VR, Marinković AD, Uskoković PS, Vuruna MM (2013) Modification of multi-wall carbon nanotubes for the removal of cadmium, lead and arsenic from wastewater. Dig J Nanomater Biostruct (DJNB) 8:501

    Google Scholar 

  • Velizarov S, Crespo JG, Reis MA (2004) Removal of inorganic anions from drinking water supplies by membrane bio/processes. Rev Environ Sci Biotechnol 3:361–380

    Article  CAS  Google Scholar 

  • Viet PH, Con TH, Ha CT, Van Ha H, Berg M, Giger W, Schertenleib R (2003) Arsenic exposure and health effects V. Elsevier, Amsterdam, pp 459–469

    Book  Google Scholar 

  • Vrba J, van der Gun J (2004) The world’s groundwater resources, world water development report 2, Contribution to Chapter 4, Report IP 2004-1. System 2:1–10

    Google Scholar 

  • Vu TA, Le GH, Dao CD, Dang LQ, Nguyen KT, Nguyen QK, Dang PT, Tran HT, Duong QT, Nguyen TV (2015) Arsenic removal from aqueous solutions by adsorption using novel MIL-53 (Fe) as a highly efficient adsorbent. RSC Adv 5:5261–5268

    Article  CAS  Google Scholar 

  • Wang S, Mulligan CN (2006) Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Sci Total Environ 366:701–721

    Article  CAS  Google Scholar 

  • Wang LK, Tay J-H, Tay STL, Hung Y-T (2010) Environmental bioengineering. Springer, New York

    Book  Google Scholar 

  • Wang C, Luo HJ, Zhang ZL, Wu Y, Zhang J, Chen SW (2014) Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. J Hazard Mater 268:124–131. https://doi.org/10.1016/j.jhazmat.2014.01.009

    Article  CAS  Google Scholar 

  • Warner NR, Christie CA, Jackson RB, Vengosh A (2013) Impacts of shale gas wastewater disposal on water quality in western Pennsylvania. Environ Sci Technol 47:11849–11857

    Article  CAS  Google Scholar 

  • Wen T, Wu XL, Tan XL, Wang XK, Xu AW (2013) One-pot synthesis of water-swellable Mg-Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As(V) from aqueous solutions. ACS Appl Mater Interfaces 5:3304–3311. https://doi.org/10.1021/am4003556

    Article  CAS  Google Scholar 

  • Xi Y, Mallavarapu M, Naidu R (2010) Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron—a SEM, TEM and XPS study. Mater Res Bull 45:1361–1367

    Article  CAS  Google Scholar 

  • Xu Z, Li Q, Gao S, Shang JK (2010) As (III) removal by hydrous titanium dioxide prepared from one-step hydrolysis of aqueous TiCl4 solution. Water Res 44:5713–5721

    Article  CAS  Google Scholar 

  • Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705

    Article  CAS  Google Scholar 

  • Yoon Y, Park WK, Hwang TM, Yoon DH, Yang WS, Kang JW (2016) Comparative evaluation of magnetite-graphene oxide and magnetite-reduced graphene oxide composite for As(III) and As(V) removal. J Hazard Mater 304:196–204. https://doi.org/10.1016/j.jhazmat.2015.10.053

    Article  CAS  Google Scholar 

  • Yu L, Ma Y, Ong CN, Xie J, Liu Y (2015) Rapid adsorption removal of arsenate by hydrous cerium oxide–graphene composite. RSC Adv 5:64983–64990

    Article  CAS  Google Scholar 

  • Yuan T, Yong Hu J, Ong SL, Luo QF, Jun Ng W (2002) Arsenic removal from household drinking water by adsorption. J Environ Sci Health A 37:1721–1736

    Article  CAS  Google Scholar 

  • Zhang J, Liu Q, Ding Y, Bei Y (2011) 3-aminopropyltriethoxysilane functionalized nanoscale zero-valent iron for the removal of dyes from aqueous solution. Pol J Chem Technol 13:35–39

    Article  Google Scholar 

  • Zhu HJ, Jia YF, Wu X, Wang H (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172:1591–1596. https://doi.org/10.1016/j.jhazmat.2009.08.031

    Article  CAS  Google Scholar 

  • Zhu B-J, Yu X-Y, Jia Y, Peng F-M, Sun B, Zhang M-Y, Luo T, Liu J-H, Huang X-J (2012) Iron and 1, 3, 5-benzenetricarboxylic metal–organic coordination polymers prepared by solvothermal method and their application in efficient As (V) removal from aqueous solutions. J Phys Chem C 116:8601–8607

    Article  CAS  Google Scholar 

  • Zhu J, Lou ZM, Liu Y, Fu RQ, Baig SA, Xu XH (2015) Adsorption behavior and removal mechanism of arsenic on graphene modified by iron-manganese binary oxide (FeMnOx/RGO) from aqueous solutions. RSC Adv 5:67951–67961. https://doi.org/10.1039/c5ra11601e

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamil Selvan Sakthivel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sakthivel, T.S., Soosaimanickam, A., Paul David, S., Sivaramalingam, A., Sambandham, B. (2021). Metal Oxides for Removal of Arsenic Contaminants from Water. In: Rajendran, S., Naushad, M., Cornejo Ponce, L., Lichtfouse, E. (eds) Metal, Metal-Oxides and Metal-Organic Frameworks for Environmental Remediation. Environmental Chemistry for a Sustainable World, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-030-68976-6_6

Download citation

Publish with us

Policies and ethics