Skip to main content

Choroidal Neovascular Membrane

  • Chapter
  • First Online:
Vitreoretinal Surgery
  • 899 Accesses

Abstract

Choroidal neovascular membranes (CNVs) most commonly occur with age-related macular degeneration (ARMD). Features of “dry” AMD include hard drusen, soft drusen, retinal pigment epithelial disruption and geographic atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001;119(10):1417-36.

    Google Scholar 

  2. Ferris FL, Davis MD, Clemons TE, Lee LY, Chew EY, Lindblad AS, et al. A simplified severity scale for age-related macular degeneration: AREDS report no. 18. Arch Ophthalmol. 2005;123(11):1570–4. https://doi.org/10.1001/archopht.123.11.1570.

    Article  PubMed  Google Scholar 

  3. Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ. Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology. 2006;113(3):363–72.

    Article  Google Scholar 

  4. Chakravarthy U, Adamis AP, Cunningham ET Jr, Goldbaum M, Guyer DR, Katz B, et al. Year 2 efficacy results of 2 randomized controlled clinical trials of pegaptanib for neovascular age-related macular degeneration. Ophthalmology. 2006;113(9):1508–25.

    PubMed  Google Scholar 

  5. Rosenfeld PJ, Rich RM, Lalwani GA. Ranibizumab: Phase III clinical trial results. Ophthalmol Clin N Am. 2006;19(3):361–72.

    Google Scholar 

  6. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–31. https://doi.org/10.1056/NEJMoa054481.

    Article  CAS  PubMed  Google Scholar 

  7. Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1432–44. https://doi.org/10.1056/NEJMoa062655.

    Article  CAS  PubMed  Google Scholar 

  8. Robison CD, Krebs I, Binder S, Barbazetto IA, Kotsolis AI, Yannuzzi LA, et al. Vitreomacular adhesion in active and end-stage age-related macular degeneration. Am J Ophthalmol. 2009;148(1):79–82. e2. https://doi.org/10.1016/j.ajo.2009.01.014.

    Article  PubMed  Google Scholar 

  9. Kaiser PK, Singer M, Tolentino M, Vitti R, Erickson K, Saroj N, et al. Long-term safety and visual outcome of intravitreal Aflibercept in Neovascular age-related macular degeneration: VIEW 1 extension study. Ophthalmol Retina. 2017;1(4):304–13. https://doi.org/10.1016/j.oret.2017.01.004.

    Article  PubMed  Google Scholar 

  10. Waldstein SM, Simader C, Staurenghi G, Chong NV, Mitchell P, Jaffe GJ, et al. Morphology and visual acuity in Aflibercept and Ranibizumab therapy for Neovascular age-related macular degeneration in the VIEW trials. Ophthalmology. 2016;123(7):1521–9. https://doi.org/10.1016/j.ophtha.2016.03.037.

    Article  PubMed  Google Scholar 

  11. Talks JS, Lotery AJ, Ghanchi F, Sivaprasad S, Johnston RL, Patel N, et al. First-year visual acuity outcomes of providing Aflibercept according to the VIEW study protocol for age-related macular degeneration. Ophthalmology. 2016;123(2):337–43. https://doi.org/10.1016/j.ophtha.2015.09.039.

    Article  PubMed  Google Scholar 

  12. Schmidt-Erfurth U, Kaiser PK, Korobelnik JF, Brown DM, Chong V, Nguyen QD, et al. Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies. Ophthalmology. 2014;121(1):193–201. https://doi.org/10.1016/j.ophtha.2013.08.011.

    Article  PubMed  Google Scholar 

  13. Orth DH, Flood TP. Management of breakthrough vitreous hemorrhage from presumed extramacular subretinal neovascularization. Retina. 1982;2(2):89–93.

    Article  CAS  Google Scholar 

  14. Kuhli-Hattenbach C, Fischer IB, Schalnus R, Hattenbach LO. Subretinal hemorrhages associated with age-related macular degeneration in patients receiving anticoagulation or antiplatelet therapy. Am J Ophthalmol. 2010;149(2):316–21 e1. https://doi.org/10.1016/j.ajo.2009.08.033.

    Article  CAS  PubMed  Google Scholar 

  15. Oshima Y, Ohji M, Tano Y. Pars plana vitrectomy with peripheral retinotomy after injection of preoperative intravitreal tissue plasminogen activator: a modified procedure to drain massive subretinal haemorrhage. Br J Ophthalmol. 2007;91(2):193–8. https://doi.org/10.1136/bjo.2006.101444.

    Article  CAS  PubMed  Google Scholar 

  16. Gopalakrishan M, Giridhar A, Bhat S, Saikumar SJ, Elias A. N S. pneumatic displacement of submacular hemorrhage: safety, efficacy, and patient selection. Retina. 2007;27(3):329–34. https://doi.org/10.1097/01.iae.0000231544.43093.40.

    Article  PubMed  Google Scholar 

  17. Ohji M, Saito Y, Hayashi A, Lewis JM, Tano Y. Pneumatic displacement of subretinal hemorrhage without tissue plasminogen activator. Arch Ophthalmol. 1998;116(10):1326–32.

    Article  CAS  Google Scholar 

  18. Hesse L, Meitinger D, Schmidt J. Little effect of tissue plasminogen activator in subretinal surgery for acute hemorrhage in age-related macular degeneration. Ger J Ophthalmol. 1996;5(6):479–83.

    CAS  PubMed  Google Scholar 

  19. Singh RP, Patel C, Sears JE. Management of subretinal macular haemorrhage by direct administration of tissue plasminogen activator. Br J Ophthalmol. 2006;90(4):429–31. https://doi.org/10.1136/bjo.2005.085001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stanescu-Segall D, Balta F, Jackson TL. Submacular hemorrhage in neovascular age-related macular degeneration: a synthesis of the literature. Surv Ophthalmol. 2016;61(1):18–32. https://doi.org/10.1016/j.survophthal.2015.04.004.

    Article  PubMed  Google Scholar 

  21. Machemer R, Steinhorst UH. Retinal separation, retinotomy, and macular relocation: II. A surgical approach for age-related macular degeneration? Graefes Arch Clin Exp Ophthalmol. 1993;231(11):635–41.

    Article  CAS  Google Scholar 

  22. Machemer R, Steinhorst UH. Retinal separation, retinotomy, and macular relocation: I. experimental studies in the rabbit eye. Graefes Arch Clin Exp Ophthalmol. 1993;231(11):629–34.

    Article  CAS  Google Scholar 

  23. Eckardt C, Eckardt U, Conrad HG. Macular rotation with and without counter-rotation of the globe in patients with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 1999;237(4):313–25.

    Article  CAS  Google Scholar 

  24. Bdel-Meguid A, Lappas A, Hartmann K, Auer F, Schrage N, Thumann G, et al. One year follow up of macular translocation with 360 degree retinotomy in patients with age related macular degeneration. Br J Ophthalmol. 2003;87(5):615–21.

    Article  Google Scholar 

  25. Wong D, Stanga P, Briggs M, Lenfestey P, Lancaster E, Li KK, et al. Case selection in macular relocation surgery for age related macular degeneration. Br J Ophthalmol. 2004;88(2):186–90.

    Article  CAS  Google Scholar 

  26. Khurana RN, Fujii GY, Walsh AC, Humayun MS, De Juan E, Jr., Sadda SR. Rapid recurrence of geographic atrophy after full macular translocation for nonexudative age-related macular degeneration. Ophthalmology. 2005;112(9):1586–91.

    Article  Google Scholar 

  27. van Meurs JC, Hofland LJ, van Hagen PM, Mooy CM, Baarsma GS, et al. Autologous peripheral retinal pigment epithelium translocation in patients with subfoveal neovascular membranes. Br J Ophthalmol. 2004;88(1):110–3.

    Article  Google Scholar 

  28. Stanga PE, Kychenthal A, Fitzke FW, Halfyard AS, Chan R, Bird AC, et al. Retinal pigment epithelium translocation after choroidal neovascular membrane removal in age-related macular degeneration. Ophthalmology. 2002;109(8):1492–8.

    Article  Google Scholar 

  29. Lappas A, Foerster AM, Weinberger AW, Coburger S, Schrage NF, Kirchhof B. Translocation of iris pigment epithelium in patients with exudative age-related macular degeneration: long-term results. Graefes Arch Clin Exp Ophthalmol. 2004;242(8):638–47.

    Article  Google Scholar 

  30. Angunawela RI, Williamson TH, Khan MA, Chong V. Choroidal translocation with a pedicle following excision of a type 1 choroidal neovascular membrane. Br J Ophthalmol. 2005;89(3):386.

    Article  CAS  Google Scholar 

  31. Thomas MA, Grand MG, Williams DF, Lee CM, Pesin SR, Lowe MA. Surgical management of subfoveal choroidal neovascularization. Ophthalmology. 1992;99(6):952–68.

    Article  CAS  Google Scholar 

  32. Phillips SJ, Sadda SR, Tso MO, Humayan MS, De Juan E, Binder S. Autologous transplantation of retinal pigment epithelium after mechanical debridement of Bruch's membrane. Curr Eye Res. 2003;26(2):81–8.

    Article  Google Scholar 

  33. Fujii GY, De Juan E, Humayun MS, Chang TS. Limited macular translocation for the management of subfoveal choroidal neovascularization after photodynamic therapy. Am J Ophthalmol. 2003;135(1):109–12.

    Article  Google Scholar 

  34. Pieramici DJ, De Juan E, Fujii GY, Reynolds SM, Melia M, Humayun MS, et al. Limited inferior macular translocation for the treatment of subfoveal choroidal neovascularization secondary to age-related macular degeneration. Am J Ophthalmol. 2000;130(4):419–28.

    Article  CAS  Google Scholar 

  35. Joussen AM, Heussen FM, Joeres S, Llacer H, Prinz B, Rohrschneider K, et al. Autologous translocation of the choroid and retinal pigment epithelium in age-related macular degeneration. Am J Ophthalmol. 2006;142(1):17–30.

    Article  Google Scholar 

  36. Bains HS, Patel MR, Singh H, Marcus DM. Surgical treatment of extensive peripapillary choroidal neovascularization in elderly patients. Retina. 2003;23(4):469–74.

    Article  Google Scholar 

  37. Grossniklaus HE, Wilson DJ, Bressler SB, Bressler NM, Toth CA, Green WR, et al. Clinicopathologic studies of eyes that were obtained postmortem from four patients who were enrolled in the submacular surgery trials: SST report no. 16. Am J Ophthalmol. 2006;141(1):93–104. https://doi.org/10.1016/j.ajo.2005.07.076.

    Article  PubMed  Google Scholar 

  38. Aisenbrey S, Lafaut BA, Szurman P, Grisanti S, Luke C, Krott R, et al. Macular translocation with 360 degrees retinotomy for exudative age-related macular degeneration. Arch Ophthalmol. 2002;120(4):451–9.

    Article  Google Scholar 

  39. Pertile G, Claes C. Macular translocation with 360 degree retinotomy for management of age-related macular degeneration with subfoveal choroidal neovascularization. Am J Ophthalmol. 2002;134(4):560–5.

    Article  Google Scholar 

  40. Ichibe M, Yoshizawa T, Funaki S, Funaki H, Ozawa Y, Tanaka Y, et al. Severe hypotony after macular translocation surgery with 360-degree retinotomy. Am J Ophthalmol. 2002;134(1):139–41.

    Article  Google Scholar 

  41. Fujikado T, Asonuma S, Ohji M, Kusaka S, Hayashi A, Ikuno Y, et al. Reading ability after macular translocation surgery with 360-degree retinotomy. Am J Ophthalmol. 2002;134(6):849–56.

    Article  Google Scholar 

  42. Cahill MT, Stinnett SS, Banks AD, Freedman SF, Toth CA. Quality of life after macular translocation with 360 degrees peripheral retinectomy for age-related macular degeneration. Ophthalmology. 2005;112(1):144–51.

    Article  Google Scholar 

  43. Lai JC, Lapolice DJ, Stinnett SS, Meyer CH, Arieu LM, Keller MA, et al. Visual outcomes following macular translocation with 360-degree peripheral retinectomy. Arch Ophthalmol. 2002;120(10):1317–24.

    Article  Google Scholar 

  44. Mruthyunjaya P, Stinnett SS, Toth CA. Change in visual function after macular translocation with 360 degrees retinectomy for neovascular age-related macular degeneration. Ophthalmology. 2004;111(9):1715–24.

    Article  Google Scholar 

  45. Atebara NH, Thomas MA, Holekamp NM, Mandell BA, Del Priore LV. Surgical removal of extensive peripapillary choroidal neovascularization associated with presumed ocular histoplasmosis syndrome. Ophthalmology. 1998;105(9):1598–605.

    Article  CAS  Google Scholar 

  46. Melberg NS, Thomas MA, Dickinson JD, Valluri S. Managing recurrent neovascularization after subfoveal surgery in presumed ocular histoplasmosis syndrome. Ophthalmology. 1996;103(7):1064–7.

    Article  CAS  Google Scholar 

  47. Lit ES, Kim RY, Damico DJ. Surgical removal of subfoveal choroidal neovascularization without removal of posterior hyaloid: a consecutive series in younger patients. Retina. 2001;21(4):317–23.

    Article  CAS  Google Scholar 

  48. Gross JG, King LP, De Juan E, Jr., Powers T. Subfoveal neovascular membrane removal in patients with traumatic choroidal rupture. Ophthalmology. 1996;103(4):579–85.

    Article  CAS  Google Scholar 

  49. Berger AS, McCuen BW, Brown GC, Brownlow RL Jr. Surgical removal of subfoveal neovascularization in idiopathic juxtafoveolar retinal telangiectasis. Retina. 1997;17(2):94–8.

    Article  CAS  Google Scholar 

  50. Cooper BA, Thomas MA. Submacular surgery to remove choroidal neovascularization associated with central serous chorioretinopathy. Am J Ophthalmol. 2000;130(2):187–91.

    Article  CAS  Google Scholar 

  51. Ng EW, Bressler NM, Boyer DS, De Juan E. Iatrogenic choroidal neovascularization occurring in patients undergoing macular surgery. Retina. 2002;22(6):711–8.

    Article  Google Scholar 

  52. Hawkins BS, Miskala PH, Bass EB, Bressler NM, Childs AL, Mangione CM, et al. Surgical removal vs observation for subfoveal choroidal neovascularization, either associated with the ocular histoplasmosis syndrome or idiopathic: II. Quality-of-life findings from a randomized clinical trial: SST group H trial: SST report no. 10. Arch Ophthalmol. 2004;122(11):1616–28.

    Article  Google Scholar 

  53. Ruiz-Moreno JM. de lV. Surgical removal of subfoveal choroidal neovascularisation in highly myopic patients. Br J Ophthalmol. 2001;85(9):1041–3.

    Article  CAS  Google Scholar 

  54. Uemura A, Thomas MA. Subretinal surgery for choroidal neovascularization in patients with high myopia. Arch Ophthalmol. 2000;118(3):344–50.

    Article  CAS  Google Scholar 

  55. Uemura A, Thomas MA. Visual outcome after surgical removal of choroidal neovascularization in pediatric patients. Arch Ophthalmol. 2000;118(10):1373–8.

    Article  CAS  Google Scholar 

  56. Wood EH, Rao P, Mahmoud TH. Nanovitreoretinal subretinal gateway device to displace submacular hemorrhage: access to the subretinal space without vitrectomy. Retina. 2019; https://doi.org/10.1097/IAE.0000000000002669.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Williamson .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williamson, T.H. (2021). Choroidal Neovascular Membrane. In: Vitreoretinal Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-68769-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68769-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68768-7

  • Online ISBN: 978-3-030-68769-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics