Skip to main content

Computational Methods for Protein Localization Analysis

  • Chapter
  • First Online:
Epigenetics and Proteomics of Leukemia

Abstract

Fluorescence microscopy has enabled imaging of spatial proteome (morphological pattern of subcellular protein localization). Automated (and even manual) high-resolution fluorescence image acquisition generates a large amount of complex image data, and manual analysis of such data in order to distill biologically meaningful information is challenging. Automated image analysis is an inevitable approach to perform quantification of phenotypic changes, evade subjective bias, and provide accurate and reproducible results. Automation requires the utilization of image processing, image analysis, and data analysis tools. In Chap. 9 is presented our customized system for automated analysis of fluorescently stained blood cells. Our aim was to develop an automatic image analysis system that would enable us to minimize the amount of required manual operations not only throughout the inspection of segmentation results but also during the initial tuning of various parameters of the segmentation algorithm. Setting free from the tuning of initial parameters allows for faster switching to data analysis of the new experiment when imaging settings or other conditions were changed. The development of the fluorescence image analysis algorithms included a good practice from the development of 2DE image analysis system (see Chap. 6). The developed tools were applied for automated analysis of confocal microscopy images to evaluate changes of histone modifications in cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andrade AR, Vogado LHS, de M S Veras R, Silva RRV, Araujo FHD, Medeiros FNS (2019) Recent computational methods for white blood cell nuclei segmentation: a comparative study. Comput Methods Programs Biomed 173:1–14

    Google Scholar 

  • Antony PPMA, Trefois C, Stojanovic A, Baumuratov AS, Kozak K (2013) Light microscopy applications in systems biology: opportunities and challenges. Cell Commun Signaling 11(1):24

    Article  CAS  Google Scholar 

  • Bajcsy P, Chalfoun J, Simon M (2018) Web microanalysis of big image data. Springer, New York

    Book  Google Scholar 

  • Bankman I (2008) Handbook of medical image processing and analysis, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Bashar MK, Komatsu K, Fujimori T, Kobayashi TJ (2012) Automatic extraction of nuclei centroids of mouse embryonic cells from fluorescence microscopy images. Plos One 7(5):e35550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, Schiegg M, Ales J, Beier T, Rudy M, Eren K, Cervantes JI, Xu B, Beuttenmueller F, Wolny A, Zhang C, Koethe U, Hamprecht FA, Kreshuk A (2019) Ilastik: interactive machine learning for (bio)image analysis. Nat Methods 16(12): 1226–1232. https://doi.org/10.1038/s41592-019-0582-9

    Article  CAS  PubMed  Google Scholar 

  • Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2):490–530

    Google Scholar 

  • Cao H, Liu H, Song E (2018) A novel algorithm for segmentation of leukocytes in peripheral blood. Biomed Signal Process Control 45:10–21

    Article  Google Scholar 

  • Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, et al. (2006) Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7(10):R100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiarini-Garcia H, Melo RCN (2011) Light Microscopy. In: Methods and Protocols. Springer, New York

    Google Scholar 

  • Choudhry P (2016) High-throughput method for automated colony and cell counting by digital image analysis based on edge detection. PloS one 11(2):e0148469. https://doi.org/10.1371/journal.pone.0148469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collins A, Huett A (2018) A multi-phenotypic imaging screen to identify bacterial effectors by exogenous expression in a HeLa cell line. Sci Data 5(1):1–12. https://doi.org/10.1038/sdata.2018.81

    Article  CAS  Google Scholar 

  • Courtney J, Woods E, Scholz D, Hall WW, Gautier VW (2015) MATtrack: a matlab-based quantitative image analysis platform for investigating real-time photo-converted fluorescent signals in live cells. PloS one 10(10):e0140209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T, Meas-Yedid V, Pankajakshan P, Lecomte T, Le Montagner Y, et al. (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 9(7):690–696

    Article  PubMed  CAS  Google Scholar 

  • Domínguez C, Heras J, Pascual V (2017) IJ-OpenCV: Combining ImageJ and OpenCV for processing images in biomedicine. Comput Biol Med 84:189–194

    Article  PubMed  Google Scholar 

  • Dukes KA, Sullivan LM (2007) A review of basic biostatistics. Evaluating Techniques in Biochemical Research Cell Press, Cambridge, MA, pp 50–56

    Google Scholar 

  • Elen A, Turan MK (2018) A new approach for fully automated segmentation of peripheral blood smears. Int J Adv Appl Sci 5(1):81–93

    Article  Google Scholar 

  • Eliceiri KW, Berthold MR, Goldberg IG, Ibáñez L, Manjunath BS, Martone ME, Murphy RF, Peng H, Plant AL, Roysam B, et al. (2012) Biological imaging software tools. Nat Methods 9(7):697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouad S, Landini G, Randell D, Galton A (2016) Morphological separation of clustered nuclei in histological images. In: International Conference on Image Analysis and Recognition. Springer, New York, pp 599–607

    Chapter  Google Scholar 

  • Furtado A, Henry R (2002) Measurement of green fluorescent protein concentration in single cells by image analysis. Anal Biochem 310(1):84–92

    Article  CAS  PubMed  Google Scholar 

  • Gomes-Alves AG, Maia AF, Cruz T, Castro H, Tomas AM (2018) Development of an automated image analysis protocol for quantification of intracellular forms of Leishmania spp. PloS one 13(8):e0201747. https://doi.org/10.1371/journal.pone.0201747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez RC, Woods RE (2018) Digital Image Processing, 4th edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Gudla PR, Nandy K, Collins J, Meaburn KJ, Misteli T, Lockett SJ (2008) A high-throughput system for segmenting nuclei using multiscale techniques. Cytometry Part A J Int Soc Anal Cytol 73(5):451–466

    Article  Google Scholar 

  • Haidekker M (2010) Advanced biomedical image analysis. Wiley, New York

    Book  Google Scholar 

  • Hawkes PW, Spence JCH (2019) Springer handbook of microscopy. Springer, New York

    Book  Google Scholar 

  • Hegde RB, Prasad K, Hebbar H, Sandhya I (2018) Peripheral blood smear analysis using image processing approach for diagnostic purposes: A review. Biocybern Biomed Eng 38(3):467–480

    Article  Google Scholar 

  • Hegde RB, Prasad K, Hebbar H, Singh BMK (2019) Development of a robust algorithm for detection of nuclei of white blood cells in peripheral blood smear images. Multimedia Tools Appl 78(13):17879–17898

    Article  Google Scholar 

  • Held M, Schmitz MHA, Fischer B, Walter T, Neumann B, Olma MH, Peter M, Ellenberg J, Gerlich DW (2010) Cellcognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat Methods 7(9):747–754

    Article  CAS  PubMed  Google Scholar 

  • Hodneland E, Kögel T, Frei DM, Gerdes HH, Lundervold A (2013) Cellsegm-a MATLAB toolbox for high-throughput 3D cell segmentation. Source Code Biol Med 8(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain A, Ghosh S, Kalkhoran SB, Hausenloy DJ, Hanssen E, Rajagopal V (2018) An automated workflow for segmenting single adult cardiac cells from large-volume serial block-face scanning electron microscopy data. J Struct Biol 202(3):275–285

    Article  PubMed  Google Scholar 

  • Jerome WG, Price RL (2018) Basic confocal microscopy. Springer, New York

    Book  Google Scholar 

  • Johnson HJ, McCormick MM, Ibanez L (2015a) The ITK software guide book 1: introduction and development guidelines, vol 1. Kitware, Inc., New York

    Google Scholar 

  • Johnson HJ, McCormick MM, Ibanez L (2015b) The ITK software guide book 2: design and functionality, vol 2. Kitware, Inc., New York

    Google Scholar 

  • Jones TR, Carpenter AE, Lamprecht MR, Moffat J, Silver SJ, Grenier JK, Castoreno AB, Eggert US, Root DE, Golland P, et al. (2009) Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proc Natl Acad Sci 106(6):1826–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaehler A, Bradski G (2016) Learning OpenCV 3: computer vision in C++ with the OpenCV library. O’Reilly Media, Inc., New York

    Google Scholar 

  • Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, Madden KL, Ljosa V, Rueden C, Eliceiri KW, Carpenter AE (2011) Improved structure, function and compatibility for cellprofiler: modular high-throughput image analysis software. Bioinformatics 27(8):1179–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kankaanpää P, Paavolainen L, Tiitta S, Karjalainen M, Päivärinne J, Nieminen J, Marjomäki V, Heino J, White DJ (2012) Bioimagexd: an open, general-purpose and high-throughput image-processing platform. Nat Methods 9(7):683–689

    Article  PubMed  CAS  Google Scholar 

  • Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vision Graphics Image Proc 29(3):273–285

    Article  Google Scholar 

  • Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331

    Article  Google Scholar 

  • Krzywinski M, Altman N (2013a) Points of significance: importance of being uncertain. Nat Methods 10(9):809–810

    Article  CAS  PubMed  Google Scholar 

  • Krzywinski M, Altman N (2013b) Points of significance: significance, p values and t-tests. Nat Methods 10(11):1041–1042

    Article  CAS  PubMed  Google Scholar 

  • Krzywinski M, Altman N (2014a) Points of significance: comparing samples–part i. Nat Methods 11(4):215–216

    Article  CAS  PubMed  Google Scholar 

  • Krzywinski M, Altman N (2014b) Points of significance: visualizing samples with box plots. Nat Methods 11(2):119–120

    Article  CAS  PubMed  Google Scholar 

  • Kubitscheck U (2017) Fluorescence microscopy: from principles to biological applications. Wiley, New York

    Book  Google Scholar 

  • Lamprecht MR, Sabatini DM, Carpenter AE (2007) Cellprofiler: free, versatile software for automated biological image analysis. Biotechniques 42(1):71–75

    Article  CAS  PubMed  Google Scholar 

  • Lawlor D (2019) Introduction to light microscopy: tips and tricks for beginners. Springer, Berlin

    Book  Google Scholar 

  • Legland D, Arganda-Carreras I, Andrey P (2016) Morpholibj: integrated library and plugins for mathematical morphology with imagej. Bioinformatics 32(22):3532–3534

    Article  CAS  PubMed  Google Scholar 

  • Li G, Liu T, Nie J, Guo L, Malicki J, Mara A, Holley SA, Xia W, Wong STC (2007) Detection of blob objects in microscopic zebrafish images based on gradient vector diffusion. Cytometry Part A J Int Soc Anal Cytol 71(10):835–845

    Article  Google Scholar 

  • Li F, Yin Z, Jin G, Zhao H, Wong STC (2013) Bioimage informatics for systems pharmacology. PLoS Comput Biol 9(4):e1003043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ljosa V, Carpenter AE (2009) Introduction to the quantitative analysis of two-dimensional fluorescence microscopy images for cell-based screening. PLoS Comput Biol 5(12):e1000603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lundberg E, Borner GH (2019) Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20(5):285–302

    Article  CAS  PubMed  Google Scholar 

  • Markaki Y, Harz H (2017) Light microscopy. In: Methods and protocols. Springer, New York

    Google Scholar 

  • McCullough DP, Gudla PR, Harris BS, Collins JA, Meaburn KJ, Nakaya MA, Yamaguchi TP, Misteli T, Lockett SJ (2008) Segmentation of whole cells and cell nuclei from 3-d optical microscope images using dynamic programming. IEEE Trans. Med. Imaging 27(5):723–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, Doan M, Ding L, Rafelski SM, Thirstrup D, et al. (2018) Cellprofiler 3.0: Next-generation image processing for biology. PLoS Biol 16(7):e2005970

    Google Scholar 

  • Meijering E, Carpenter AE, Peng H, Hamprecht FA, Olivo-Marin JC (2016) Imagining the future of bioimage analysis. Nat Biotechnol 34(12):1250

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Sladoje N (2020) Bioimage data analysis workflows. Springer, Berlin

    Book  Google Scholar 

  • Model MA, Burkhardt JK (2001) A standard for calibration and shading correction of a fluorescence microscope. Cytometry J Int Soc Anal Cytol 44(4):309–316

    CAS  Google Scholar 

  • Nandy K, Gudla PR, Meaburn KJ, Misteli T, Lockett SJ (2009) Automatic nuclei segmentation and spatial fish analysis for cancer detection. In: Proceedings of the 2009 annual international conference of the IEEE engineering in medicine and biology society. IEEE, New York, pp 6718–6721

    Chapter  Google Scholar 

  • Nandy K, Gudla PR, Amundsen R, Meaburn KJ, Misteli T, Lockett SJ (2012) Automatic segmentation and supervised learning-based selection of nuclei in cancer tissue images. Cytometry Part A 81(9):743–754

    Article  Google Scholar 

  • Navakauskiene R, Borutinskaite VV, Treigyte G, Savickiene J, Matuzevicius D, Navakauskas D, Magnusson KE (2014) Epigenetic changes during hematopoietic cell granulocytic differentiation—comparative analysis of primary CD34+cells, KG1 myeloid cells and mature neutrophils. BMC Cell Biol 15:4. https://doi.org/10.1186/1471-2121-15-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • North AJ (2006) Seeing is believing? a beginners’ guide to practical pitfalls in image acquisition. J Cell Biol 172(1):9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  • Ouyang W, Winsnes CF, Hjelmare M, Cesnik AJ, Åkesson L, Xu H, Sullivan DP, Dai S, Lan J, Jinmo P, et al. (2019) Analysis of the human protein atlas image classification competition. Nat Methods 16(12):1254–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulik R, Micsik T, Kiszler G, Kaszal P, Szekely J, Paulik N, Varhalmi E, Premusz V, Krenacs T, Molnar B (2017) An optimized image analysis algorithm for detecting nuclear signals in digital whole slides for histopathology. Cytometry Part A 91A(6, SI):595–608. https://doi.org/10.1002/cyto.a.23124

  • Pawley J (2006) Handbook of biological confocal microscopy, vol 236. Springer, New York

    Book  Google Scholar 

  • Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7):629–639

    Article  Google Scholar 

  • Phoulady HA, Goldgof D, Hall LO, Mouton PR (2017) A framework for nucleus and overlapping cytoplasm segmentation in cervical cytology extended depth of field and volume images. Comput Med Imaging Graphics 59:38–49

    Article  Google Scholar 

  • Pietzsch T, Preibisch S, Tomančák P, Saalfeld S (2012) ImgLib2–generic image processing in Java. Bioinformatics 28(22):3009–3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prinyakupt J, Pluempitiwiriyawej C (2015) Segmentation of white blood cells and comparison of cell morphology by linear and naïve bayes classifiers. Biomed Eng Online 14(1):63

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiao G, Zong G, Sun M, Wang J (2012) Automatic neutrophil nucleus lobe counting based on graph representation of region skeleton. Cytometry Part A 81(9):734–742

    Article  Google Scholar 

  • Ranefall P, Wahlby C (2016) Global gray-level thresholding based on object size. Cytometry Part A 89A(4):385–390. https://doi.org/10.1002/cyto.a.22806

    Article  CAS  Google Scholar 

  • Rebollo E, Bosch M (2019) Computer optimized microscopy: methods and protocols. Springer, New York

    Book  Google Scholar 

  • Rittscher J, Machiraju R, Wong STC (2008) Microscopic image analysis for life science applications. Artech House, New York

    Google Scholar 

  • Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) Imagej2: imagej for the next generation of scientific image data. BMC Bioinf 18(1):529

    Article  Google Scholar 

  • Russ JC, Neal FB (2017) The image processing handbook, 7th edn. CRC Press, West Palm Beach

    Google Scholar 

  • Sajjad M, Khan S, Jan Z, Muhammad K, Moon H, Kwak JT, Rho S, Baik SW, Mehmood I (2016) Leukocytes classification and segmentation in microscopic blood smear: a resource-aware healthcare service in smart cities. IEEE Access 5:3475–3489

    Article  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imagej: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnipper N, Stassen HH, Kallinich T, Sperling K, Hoffmann K (2017) Image analysis of neutrophil nuclear morphology: learning about phenotypic range and its reliable analysis from patients with pelger-huët-anomaly and treated with colchicine. Cytometry Part B Clin Cytometry 92(6):541–549

    Article  CAS  Google Scholar 

  • Schroeder W, Martin K, Lorensen B (2006) The visualization toolkit, 4th edn. Kitware, New York

    Google Scholar 

  • Schüffler PJ, Fuchs TJ, Ong CS, Wild PJ, Rupp NJ, Buhmann JM (2013) TMARKER: a free software toolkit for histopathological cell counting and staining estimation. J Pathol Inf 4(2):2

    Article  Google Scholar 

  • Schwarzfischer M, Marr C, Krumsiek J, Hoppe P, Schroeder T, Theis FJ (2011) Efficient fluorescence image normalization for time lapse movies. In: Proc. Microscopic Image Analysis with Applications in Biology. MIAAB

    Google Scholar 

  • Seruca R, Suri JS, Sanches JM (2017) Fluorescence imaging and biological quantification. CRC Press, New York

    Book  Google Scholar 

  • Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge University, Cambridge

    Google Scholar 

  • Sluder G, Wolf DE (2013) Digital microscopy. Academic Press, New York

    Google Scholar 

  • Soille P (2013) Morphological image analysis: principles and applications. Springer, New York

    Google Scholar 

  • Sommer C, Straehle CN, Köthe U, Hamprecht FA (2011) Ilastik: interactive learning and segmentation toolkit. In: Proceedings of the 8th IEEE international symposium on biomedical imaging (ISBI 2011), pp 230–233. https://doi.org/10.1109/ISBI.2011.5872394, 1

  • Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90

    Article  CAS  PubMed  Google Scholar 

  • Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271). IEEE, New York, pp 839–846

    Google Scholar 

  • Usaj MM, Styles EB, Verster AJ, Friesen H, Boone C, Andrews BJ (2016) High-content screening for quantitative cell biology. Trends Cell Biol. 26(8):598–611

    Article  CAS  Google Scholar 

  • Van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T (2014) scikit-image: image processing in Python. Peer J 2:e453

    Google Scholar 

  • Vincent L (1993) Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans Image Process 2(2):176–201

    Article  CAS  PubMed  Google Scholar 

  • Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. (6):583–598

    Google Scholar 

  • Wallace W, Schaefer LH, Swedlow JR (2001) A workingperson’s guide to deconvolution in light microscopy. Biotechniques 31(5):1076–1097

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cao Y (2019) Leukocyte nucleus segmentation method based on enhancing the saliency of saturation component. J. Algorithms Comput. Technol. 13:1748302619845783

    Article  Google Scholar 

  • Waters JC (2009) Accuracy and precision in quantitative fluorescence microscopy

    Google Scholar 

  • Waters J, Wittmann T (2014) Quantitative imaging in cell biology. Academic Press, New York

    Google Scholar 

  • Xue JH, Zhang YJ (2012) Ridler and calvard’s, kittler and illingworth’s and otsu’s methods for image thresholding. Pattern Recognit Lett 33(6):793–797

    Article  Google Scholar 

  • Yang SJ, Berndl M, Ando DM, Barch M, Narayanaswamy A, Christiansen E, Hoyer S, Roat C, Hung J, Rueden CT, Shankar A, Finkbeiner S, Nelson P (2018) Assessing microscope image focus quality with deep learning. BMC Bioinf 19(1):1–9. https://doi.org/10.1186/s12859-018-2087-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navakauskienė, R., Navakauskas, D., Borutinskaitė, V., Matuzevičius, D. (2021). Computational Methods for Protein Localization Analysis. In: Epigenetics and Proteomics of Leukemia. Springer, Cham. https://doi.org/10.1007/978-3-030-68708-3_9

Download citation

Publish with us

Policies and ethics