Skip to main content

Epigenetic Modifiers and Their Inhibitors in Leukemia Treatment

  • Chapter
  • First Online:
Epigenetics and Proteomics of Leukemia

Abstract

It seems quite unlikely that any adult cancer may arise as the result of single gene defect. Epigenetic alterations have been described in AML and also play an important role in cancer formation. Chapter 2 includes a description of chromatin modifiers (HDACi, HMTi, and DNMTi) alone or in combination with all-trans retinoic acid, inhibitors of protein kinases, nucleotide analogues and ionizing radiation effects on leukemia cell proliferation, differentiation, and apoptosis. Several epigenetic inhibitors have been already approved for cancer treatment—these are great opportunities and the promise of epigenetic therapy in leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Advani R, Warnke R, Rosenberg S (1999) Treatment of multicentric Castleman’s disease complicated by the development of non-Hodgkin’s lymphoma with high-dose chemotherapy and autologous peripheral stem-cell support. Ann Oncol 10(10):1207–1209. https://doi.org/10.1023/A:1008366721816

    Article  CAS  PubMed  Google Scholar 

  • Borutinskaitė V, Virkšaitė A, Gudelytė G, Navakauskienė R (2018) Green tea polyphenol EGCG causes anti-cancerous epigenetic modulations in acute promyelocytic leukemia cells. Leukemia Lymphoma 59(2):469–478. https://doi.org/10.1080/10428194.2017.1339881

    Article  PubMed  CAS  Google Scholar 

  • Borutinskaite V, Navakauskiene R (2015) The histone deacetylase inhibitor BML-210 influences gene and protein expression in human promyelocytic leukemia NB4 cells via epigenetic reprogramming. Int J Mol Sci 16(8):18252–18269. https://doi.org/10.3390/ijms160818252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borutinskaite V, Bauraite-Akatova J, Navakauskiene R (2016) Anti-leukemic activity of DNA methyltransferase inhibitor procaine targeted on human leukaemia cells. Open Life Sci 11(1):322–330. https://doi.org/10.1515/biol-2016-0044

    Article  CAS  Google Scholar 

  • Brueckner B, Lyko F (2004) DNA methyltransferase inhibitors: old and new drugs for an epigenetic cancer therapy. Trends Pharmacol Sci 25(11):551–554. https://doi.org/10.1016/j.tips.2004.09.004

    Article  CAS  PubMed  Google Scholar 

  • Campbell P, Thomas CM (2017) Belinostat for the treatment of relapsed or refractory peripheral T-cell lymphoma. J Oncol Pharm Pract 23(2):143–147

    Article  CAS  PubMed  Google Scholar 

  • Casciello F, Windloch K, Gannon F, Lee JS (2015) Functional role of G9a histone methyltransferase in cancer. Front Immunol 6:487. https://doi.org/10.3389/fimmu.2015.00487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chijiwa T, Mishima A, Hagiwara M, Sano M, Hayashi K, Inoue T, Naito K, Toshioka T, Hidaka H (1990) Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem 265(9):5267–5272

    Article  CAS  PubMed  Google Scholar 

  • Denis GV, Vaziri C, Guo N, Faller DV (2000) RING3 kinase transactivates promoters of cell cycle regulatory genes through E2F. Cell Growth Differ Mol Biol J Am Assoc Cancer Res 11(8):417

    CAS  Google Scholar 

  • Denis GV, McComb ME, Faller DV, Sinha A, Romesser PB, Costello CE (2006) Identification of transcription complexes that contain the double bromodomain protein Brd2 and chromatin remodeling machines. J Proteome Res 5(3):502–511

    Article  CAS  PubMed  Google Scholar 

  • Duan R, Du W, Guo W (2020) EZH2: a novel target for cancer treatment. J Hematol Oncol 13:1–12

    Article  CAS  Google Scholar 

  • Gianni M, Terao M, Norio P, Barbui T, Rambaldi A, Garattini E (1995) All-trans-retinoic acid and cyclic adenosine-monophosphate cooperate in the expression of leukocyte alkaline-phosphatase in acute promyelocytic leukemia-cells. Blood 85(12):3619–3635. https://doi.org/10.1182/blood.V85.12.3619.bloodjournal85123619

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt SM, Nimer SD (2014) Chromatin modifiers and the promise of epigenetic therapy in acute leukemia. Leukemia 28(7):1396–1406. https://doi.org/10.1038/leu.2014.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halsall JA, Turner BM (2016) Histone deacetylase inhibitors for cancer therapy: An evolutionarily ancient resistance response may explain their limited success. Bioessays 38(11):1102–1110. https://doi.org/10.1002/bies.201600070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A, Pandolfi P (1998) Distinct interactions of PML-RAR alpha and PLZF-RAR alpha with co-repressors determine differential responses to RA in APL. Nat Genet 18(2):126–135. https://doi.org/10.1038/ng0298-126

    Article  CAS  PubMed  Google Scholar 

  • Hollingshead LM, Faulds D (1991) Idarubicin – a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in the chemotherapy of cancer. Drugs 42(4):690–719. https://doi.org/10.2165/00003495-199142040-00010

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zou Y, Lin L, Ma X, Huang X (2017) Effect of BIX-01294 on proliferation, apoptosis and histone methylation of acute T lymphoblastic leukemia cells. Leukemia Res 62:34–39. https://doi.org/10.1016/j.leukres.2017.09.015

    Article  CAS  Google Scholar 

  • Iwata K, Ogata S, Okumura K, Taguchi H (2003) Induction of differentiation in human promyelocytic leukemia HL-60 cell line by niacin-related compounds. Biosci Biotechnol Biochem 67(5):1132–1135. https://doi.org/10.1271/bbb.67.1132

    Article  CAS  PubMed  Google Scholar 

  • Janssens Y, Wynendaele E, Vanden Berghe W, De Spiegeleer B (2019) Peptides as epigenetic modulators: therapeutic implications. Clin Epigenet 11. https://doi.org/10.1186/s13148-019-0700-7

  • Johnston PB, Cashen AF, Nikolinakos PG, Beaven AW, Barta SK, Bhat G, Song T, Choi MR, Allen LF, de Vos S, Oki Y, Deng C, Foss FM (2015) Safe and effective treatment of patients with peripheral T-Cell lymphoma (PTCL) with the novel HDAC inhibitor, belinostat, in combination with CHOP: Results of the Bel-CHOP phase 1 trial. Blood 126(23): 253–253

    Article  Google Scholar 

  • Kim EK, Kwon KB, Han MJ, Song MY, Lee JH, Ko YS, Shin BC, Yu J, Lee YR, Ryu DG, Park JW, Park BH (2007) Induction of G1 arrest and apoptosis by Scutellaria barbata in the human promyelocytic leukemia HL-60 cell line. Int J Mol Med 20(1):123–128

    CAS  PubMed  Google Scholar 

  • Lochner A, Moolman JA (2006) The many faces of H89: A review. Cardiovasc Drug Rev 24(3–4):261–74. https://doi.org/10.1111/j.1527-3466.2006.00261.x

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Pedrera C, Dobado-Berrios P, Ros R, Torres A, Garcia-Navarro S, Jardi M, Felez J, Velasco F (2001) Signal transduction pathways underlying the expression of tissue factor and thrombomodulin in promyelocytic cells induced to differentiate by retinoid acid and dibutyryl camp. Thromb Haemost 85(6):1031–1036

    Article  CAS  PubMed  Google Scholar 

  • Maiques-Diaz A, Spencer GJ, Lynch JT, Ciceri F, Williams EL, Amaral FMR, Wiseman DH, Harris WJ, Li Y, Sahoo S, et al. (2018) Enhancer activation by pharmacologic displacement of LSD1 from GFI1 induces differentiation in acute myeloid leukemia. Cell Rep 22(13):3641–3659

    Article  CAS  PubMed  Google Scholar 

  • Mamoon AM, Baker RC, Farley JM (2004) Regulation of acetylcholine-induced phosphorylation of PLD1 in porcine tracheal smooth muscle. J Biomed Sci 11(6):810–817

    Article  CAS  PubMed  Google Scholar 

  • Mangelsdorf DJ, Koeffler HP, Donaldson CA, Pike JW, Haussler MR (1984) 1,25-Dihydroxyvitamin D3-induced differentiation in a human promyelocytic leukemia cell line (HL-60): receptor-mediated maturation to macrophage-like cells. J Cell Biol 98(2):391–398

    Article  CAS  PubMed  Google Scholar 

  • Merzvinskyte R, Treigyte G, Savickiene J, Magnusson KE, Navakauskiene R (2006) Effects of histone deacetylase inhibitors, sodium phenyl butyrate and vitamin B3, in combination with retinoic acid on granulocytic differentiation of human promyelocytic leukemia HL-60 cells. In: Diederich M (ed) Signal transduction pathways, PT B: stress signaling and transcriptional control, Annals of the New York Academy of Sciences, vol 1091, pp 356–367. https://doi.org/10.1196/annals.1378.080, cell Signaling World 2006 Conference, Luxembourg, Luxembourg, Jan 25–28, 2006

  • Miller AA, Kurschel E, Osieka R, Schmidt CG (1987) Clinical pharmacology of sodium butyrate in patients with acute leukemia. Eur J Cancer Clin Oncol 23(9):1283–1290. https://doi.org/10.1016/0277-5379(87)90109-x

    Article  CAS  PubMed  Google Scholar 

  • Minucci S, Nervi C, Lo Coco F, Pelicci P (2001) Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias? Oncogene 20(24):3110–3115. https://doi.org/10.1038/sj.onc.1204336

    Article  CAS  PubMed  Google Scholar 

  • Navakauskiene R, Treigyte G, Pivoriunas A, Savickiene J (2002) Cell cycle inhibitors in retinoic acid- and etoposide-mediated biological responses. Biologija 2:64–67

    Google Scholar 

  • Navakauskiene R, Treigyte G, Gineitis A, Magnusson KE (2004a) Identification of apoptotic tyrosine-phosphorylated proteins after etoposide or retinoic acid treatment of HL-60 cells. Proteomics 4(4):1029–1041. https://doi.org/10.1002/pmic.200300671

    Article  CAS  PubMed  Google Scholar 

  • Navakauskiene R, Treigyte G, Savickiene J, Gineitis A, Magnusson KE (2004b) Alterations in protein expression in HL-60 cells during etoposide-induced apoptosis modulated by the caspase inhibitor ZVAD.fmk. In: Diederich M (ed) Signal transduction pathways, chromatin structure, and gene expression mechanisms as therapeutic targets, Fdn Rech Canc & Sang; Novartis Luxembourg; Q8 Petr, Annals of the New York Academy of Sciences, vol 1030, pp 393–402. https://doi.org/10.1196/annals.1329.0049

  • Noguera IN, Catalano G, Banella C, Divona M, Faraoni I, Ottone T, Arcese W, Voso MT (2019) Acute promyelocytic leukemia: Update on the mechanisms of leukemogenesis, resistance and on innovative treatment strategies. Cancers 11(10). https://doi.org/10.3390/cancers11101591

  • Olsson IL, Breitman TR, Sarngadharan MG, C GR (1983) Mechanisms for induction of differentiation in the human promyelocytic cell line HL-60. Haematol Blood Transfus 28:384–389

    Google Scholar 

  • Pan YM, Wang CG, Zhu M, Xing R, Cui JT, Li WM, Yu DD, Wang SB, Zhu W, Ye YJ, Wu Y, Wang S, Lu YY (2016) STAT3 signaling drives EZH2 transcriptional activation and mediates poor prognosis in gastric cancer. Mol Cancer 15. https://doi.org/10.1186/s12943-016-0561-z

  • Park YS, Cho NJ (2012) EGFR and PKC are involved in the activation of ERK1/2 and p90 RSK and the subsequent proliferation of SNU-407 colon cancer cells by muscarinic acetylcholine receptors. Mol Cell Biochem 370(1–2):191–198. https://doi.org/10.1007/s11010-012-1410-z

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy R, Mehta K (1998) Altered metabolism of all-trans-retinoic acid in liposome-encapsulated form. Cancer Lett 134(2):121–128

    Article  CAS  PubMed  Google Scholar 

  • Peng CY, Jiang J, Zheng HT, Liu XS (2010) Growth-inhibiting effects of arsenic trioxide plus epigenetic therapeutic agents on leukemia cell lines. Leuk Lymph 51(2):297–303. https://doi.org/10.3109/10428190903486212

    Article  CAS  Google Scholar 

  • Pivoriunas A, Navakauskiene R, Gineitis A (2004) Inhibition of phosphatidylinositol 3-kinase activity blocks nuclear accumulation of protein kinase zetta during granulocytic differentiation of HL-60 cells. Biologija 2:46–48

    Google Scholar 

  • Pivoriunas A, Savickiene J, Treigyte G, Tunaitis V, Navakauskiene R, Magnusson KE (2007) PI3-K signaling pathway suppresses PMA-induced expression of p21WAF1/Cip1 in human leukemia cells. Mol Cell Biochem 302(1–2):9–18. https://doi.org/10.1007/s11010-007-9419-4

    Article  CAS  PubMed  Google Scholar 

  • San Jose-Eneriz E, Gimenez-Camino N, Agirre X, Prosper F (2019) HDAC inhibitors in acute myeloid leukemia. Cancers 11(11). https://doi.org/10.3390/cancers11111794

  • Savickiene J, Gineitis A (2003) 3-Deazauridine triggers dose-dependent apoptosis in myeloid leukemia cells and enhances retinoic acid-induced granulocytic differentiation of HL-60 cells. Int J Biochem Cell Biol 35(10):1482–1494. https://doi.org/10.1016/S1357-2725(03)00130-4

    Article  CAS  PubMed  Google Scholar 

  • Savickiene J, Gineitis A, Shanbhag VP, Stigbrand T (1995) Protein kinase inhibitors exert stage specific and inducer dependent effects on HL-60 cell differentiation. Anticancer Res 15(3):687–692

    CAS  PubMed  Google Scholar 

  • Savickiene J, Gineitis A, Stigbrand T (1999) Modulation of apoptosis of proliferating and differentiating HL-60 cells by protein kinase inhibitors: suppression of PKC or PKA differently affects cell differentiation and apoptosis. Cell Death Differ 6(7):698–709. https://doi.org/10.1038/sj.cdd.4400541

    Article  CAS  PubMed  Google Scholar 

  • Savickiene J, Kazlauskaite N, Characiejus D, Treigyte G, Navakauskiene R (2002) Combined differentiating effects of retinoic acid and nucleoside analogues on acute promyelocytic leukemia. Acta Med Lituanica 9:22–27

    Google Scholar 

  • Savickiene J, Borutinskaite VV, Treigyte G, Magnusson KE, Navakauskiene R (2006a) The novel histone deacetylase inhibitor BML-210 exerts growth inhibitory, proapoptotic and differentiation stimulating effects on the human leukemia cell lines. Eur J Pharmacol 549(1–3):9–18. https://doi.org/10.1016/j.ejphar.2006.08.010

    Article  CAS  PubMed  Google Scholar 

  • Savickiene J, Treigyte G, Borutinskaite V, Navakauskiene R, Magnusson KE (2006b) The histone deacetylase inhibitor FK228 distinctly sensitizes the human leukemia cells to retinoic acid-induced differentiation. In: Diederich M (ed) Signal transduction pathways, PT B: Stress signaling and transcriptional control, Annals of the New York academy of sciences, vol 1091, pp 368–384. https://doi.org/10.1196/annals.1378.081, cell Signaling World 2006 Conference, Luxembourg, Luxembourg, Jan 25–28, 2006

    Google Scholar 

  • Savickiene J, Treigyte G, Magnusson KE, Navakauskiene R (2009) Response of retinoic acid-resistant KG1 cells to combination of retinoic acid with diverse histone deacetylase inhibitors. In: Diederich M (ed) Natural compounds and their role in apoptotic cell signaling pathways. Annals of the New York academy of sciences, vol 1171, pp 321–333. https://doi.org/10.1111/j.1749-6632.2009.04718.x

  • Savickiene J, Treigyte G, Aleksandraviciene C, Navakauskiene R (2010a) Low-dose ionizing radiation effects on differentiation of HL-60 cells. Central Eur J Biol 5(5):600–612. https://doi.org/10.2478/s11535-010-0085-2

    CAS  Google Scholar 

  • Savickiene J, Treigyte G, Gineitis A, Navakauskiene R (2010b) A critical role of redox state in determining HL-60 cell granulocytic differentiation and apoptosis via involvement of PKC and NF-kappa B. In Vitro Cell Dev Biol Animal 46(6):547–559. https://doi.org/10.1007/s11626-010-9296-0

    Article  CAS  Google Scholar 

  • Savickiene J, Treigyte G, Vistartaite G, Tunaitis V, Magnusson KE, Navakauskiene R (2011) C/EBPalpha and PU.1 are involved in distinct differentiation responses of acute promyelocytic leukemia HL-60 and NB4 cells via chromatin remodeling. Differentiation 81(1):57–67. https://doi.org/10.1016/j.diff.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  • Savickiene J, Treigyte G, Borutinskaite VV, Navakauskiene R (2012a) Antileukemic activity of combined epigenetic agents, DNMT inhibitors zebularine and RG108 with HDAC inhibitors, against promyelocytic leukemia HL-60 cells. Cell Mol Biol Lett 17(4):501–525. https://doi.org/10.2478/s11658-012-0024-5

    Article  CAS  PubMed  Google Scholar 

  • Savickiene J, Treigyte G, Jazdauskaite A, Borutinskaite VV, Navakauskiene R (2012b) DNA methyltransferase inhibitor RG108 and histone deacetylase inhibitors cooperate to enhance NB4 cell differentiation and E-cadherin re-expression by chromatin remodeling. Cell Biol Int 36(11):1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Savickiene J, Treigyte G, Jonusiene V, Bruzaite R, Borutinskaite VV, Navakauskiene R (2012c) Epigenetic changes by zebularine leading to enhanced differentiation of human promyelocytic leukemia NB4 and KG1 cells. Mol Cell Biochem 359(1–2):245–261. https://doi.org/10.1007/s11010-011-1019-7

    Article  CAS  PubMed  Google Scholar 

  • Savickiene J, Treigyte G, Valiuliene G, Stirblyte I, Navakauskiene R (2014) Epigenetic and molecular mechanisms underlying the antileukemic activity of the histone deacetylase inhibitor belinostat in human acute promyelocytic leukemia cells. Anti-Cancer Drugs 25(8):938–949. https://doi.org/10.1097/CAD.0000000000000122

    Article  CAS  PubMed  Google Scholar 

  • Slack J, Rusiniak M (2000) Current issues in the management of acute promyelocytic leukemia. Ann Hematol 79(5):227–238. https://doi.org/10.1007/s002770050585

    Article  CAS  PubMed  Google Scholar 

  • Spira AI, Carducci MA (2003) Differentiation therapy. Curr Opin Pharmacol 3(4):338–343. https://doi.org/10.1016/S1471-4892(03)00081-X

    Article  CAS  PubMed  Google Scholar 

  • Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M, Baudet V, Boissin P, Boursier E, Loriolle F, other (1991) The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 266(24):15771–15781

    Article  CAS  PubMed  Google Scholar 

  • Treigyte G, Savickiene J, Pivoriunas A, Navakauskiene R (2006) Effects of inhibition of phosphoinositide 3-kinase and p53 on monocytic differentiation driven leukaemia cells with different p53 status. Biologija 2:93–98

    Google Scholar 

  • Valiulienė G, Treigytė G, Savickienė J, Matuzevičius D, Alksnė M, Jarašienė-Burinskaja R, Bukelskienė V, Navakauskas D, Navakauskienė R (2016) Histone modifications patterns in tissues and tumours from acute promyelocytic leukemia xenograft model in response to combined epigenetic therapy. Biomed Pharmacother 79:62–70. https://doi.org/10.1016/j.biopha.2016.01.044

    Article  PubMed  CAS  Google Scholar 

  • Valiuliene G, Stirblyte I, Cicenaite D, Kaupinis A, Valius M, Navakauskiene R (2015) Belinostat, a potent HDACi, exerts antileukaemic effect in human acute promyelocytic leukaemia cells via chromatin remodelling. J Cell Mol Med 19(7):1742–1755. https://doi.org/10.1111/jcmm.12550

    Article  CAS  PubMed  Google Scholar 

  • Valiuliene G, Stirblyte I, Jasnauskaite M, Borutinskaite V, Navakauskiene R (2017) Anti-leukemic effects of HDACi belinostat and HMTi 3-Deazaneplanocin A on human acute promyelocytic leukemia cells. Eur J Pharmacol 799:143–153. https://doi.org/10.1016/j.ejphar.2017.02.014

    Article  CAS  PubMed  Google Scholar 

  • Villar-Garea A, Fraga MF, Espada J, Esteller M (2003) Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 63(16):4984–4989

    CAS  PubMed  Google Scholar 

  • Vitkeviciene A, Baksiene S, Borutinskaite V, Navakauskiene R (2018) Epigallocatechin-3-gallate and BIX-01294 have different impact on epigenetics and senescence modulation in acute and chronic myeloid leukemia cells. Eur J Pharmacol 838:32–40. https://doi.org/10.1016/j.ejphar.2018.09.005

    Article  CAS  PubMed  Google Scholar 

  • Vitkeviciene A, Skiauteryte G, Zucenka A, Stoskus M, Gineikiene E, Borutinskaite V, Griskevicius L, Navakauskiene R (2019) HDAC and HMT inhibitors in combination with conventional therapy: A novel treatment option for acute promyelocytic leukemia. J Oncol 2019:11. https://doi.org/10.1155/2019/6179573

    Article  CAS  Google Scholar 

  • Weston AD, Blumberg B, Underhill TM (2003) Active repression by unliganded retinoid receptors in development: less is sometimes more. J Cell Biol 161(2):223–228. https://doi.org/10.1083/jcb.200211117

    Article  CAS  PubMed  Google Scholar 

  • Yoon S, Eom GH (2016) HDAC and HDAC inhibitor: From cancer to cardiovascular diseases. Chonnam Med J 52(1):1–11. https://doi.org/10.4068/cmj.2016.52.1.1

    Article  CAS  PubMed  Google Scholar 

  • Zhou GB, Zhang J, Wang ZY, Chen SJ, Chen Z (2007) Treatment of acute promyelocytic leukaemia with all-trans retinoic acid and arsenic trioxide: a paradigm of synergistic molecular targeting therapy. Philos Trans R Soc B Biol Sci 362(1482):959–971. https://doi.org/10.1098/rstb.2007.2026

    Article  CAS  Google Scholar 

  • Zhu DM, Narla RK, Fang WH, Chia NC, Uckun FM (1998) Calphostin C triggers calcium-dependent apoptosis in human acute lymphoblastic leukemia cells. Clin Cancer Res 4(12):2967–2976

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navakauskienė, R., Navakauskas, D., Borutinskaitė, V., Matuzevičius, D. (2021). Epigenetic Modifiers and Their Inhibitors in Leukemia Treatment. In: Epigenetics and Proteomics of Leukemia. Springer, Cham. https://doi.org/10.1007/978-3-030-68708-3_2

Download citation

Publish with us

Policies and ethics