Skip to main content

Nanoporous Metal Oxides for Supercapacitor Applications

  • Chapter
  • First Online:
Chemically Deposited Nanocrystalline Metal Oxide Thin Films

Abstract

Nanoporous metal oxides (NMOs) have attracted a substantial research interest in energy storage applications. They have reported beneficial structural, morphological, and electronic properties along with high capacitance values for supercapacitor applications. Usually, porous materials are synthesized using traditional template methods, but they are high-cost and low-throughput methods, which cannot be scaled up for mass production. On the other side, the chemical methods like chemical bath deposition, hydrothermal, sol gel, and electrodeposition for the development of porous metal oxides emerged the field with enormous possibilities. Chemical methods provide atomic-level control for the reaction, and they can be commercialized for large-scale production. Further, to be an ideal candidate for supercapacitor applications, we need to design controlled synthesis to attain high surface area and useful porous structure. This chapter will briefly discuss traditional processing methodologies for porous materials, their limitations, and the development of various chemical methods with their advantages for developing efficient NMO for supercapacitor applications. The prospects and limitations of these methods for developing efficient porous materials will be discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pophale R, Cheeseman PA, Deem MW (2011) A database of new zeolite-like materials. Phys Chem Chem Phys 13:12407–12412

    Article  CAS  Google Scholar 

  2. Kim SH, Liu BYH, Zachariah MR (2004) Ultrahigh surface area nanoporous silica particles via an aero-sol gel process. Langmuir 20:2523–2526

    Article  CAS  Google Scholar 

  3. Bronstein LM, Chernyshov DM, Karlinsey R, Zwanziger JW, Matveeva VG, Sulman EM, Demidenko GN, Hentze HP, Antonietti M (2003) Mesoporous alumina and aluminosilica with pd and pt nanoparticles: structure and catalytic properties. Chem Mater 15:2623–2631

    Article  CAS  Google Scholar 

  4. Dong Y, Liu X, Ma Q, Meng G (2006) Preparation of cordierite-based porous ceramic micro-filtration membranes using waste fly ash as the main raw materials. J Memb. Sci 285:173–181

    Article  CAS  Google Scholar 

  5. Biswal A, Panda P, Jiang ZT, Tripathy B, Minakshi M (2019) Facile synthesis of a nanoporous sea sponge architecture in a binary metal oxide. Nanoscale Adv 1:1880–1892

    Article  CAS  Google Scholar 

  6. Zhang Y, Li J, Kang F, Gao F, Wang X (2012) Fabrication and electrochemical characterization of two-dimensional ordered nanoporous manganese oxide for supercapacitor applications. Int J Hydrog Energy 37:860–866

    Article  CAS  Google Scholar 

  7. Xia XH, Tu JP, Zhang J, Huang XH, Wang XL, Zhang WK, Huang H (2008) Enhanced electrochromics of nanoporous cobalt oxide thin film prepared by a facile chemical bath deposition. Electrochem Commun 10:1815–1818

    Article  CAS  Google Scholar 

  8. Yang L, Zhang W, Duan M, Jin Z (2010) Electrodeposition of porous Zno electrodes in the presence of cetyltrimethylammonium bromide. Adv Mater Res 105–106:639–642

    Article  CAS  Google Scholar 

  9. Huang X, Zhao G, Wang G, Irvine JTS (2018) Synthesis and applications of nanoporous perovskite metal oxides. Chem Sci 9:3623–3637

    Article  CAS  Google Scholar 

  10. Zhang J, Li CM (2012) Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem Soc Rev 41:7016–7031

    Article  CAS  Google Scholar 

  11. Noori A, El-Kady MF, Rahmanifar MS, Kaner RB, Mousavi MF (2019) Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem Soc Rev 48:1272–1341

    Article  CAS  Google Scholar 

  12. Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W (2017) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46:6816–6854

    Article  CAS  Google Scholar 

  13. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  14. Zhang Y, Li L, Su H, Huang W, Dong X (2015) Binary metal oxide: advanced energy storage materials in supercapacitors. J Mater Chem A 3:43–59

    Article  CAS  Google Scholar 

  15. Wang J, Zhang L, Liu X, Zhang X, Tian Y, Liu X, Zhao J, Li Y (2017) Assembly of flexible CoMoO4 @NiMoO4 xH2O and Fe2O3electrodes for solid-state asymmetric supercapacitors. Sci Rep 7:41088

    Article  CAS  Google Scholar 

  16. Kakvand P, Rahmanifar MS, El-Kady MF, Pendashteh A, Kiani MA, Hashami M, Najafi M, Abbasi A, Mousavi MF, Kaner RB (2016) Synthesis of NiMnO3/C nano-composite electrode materials for electrochemical capacitors. Nanotechnology 27:315401

    Article  CAS  Google Scholar 

  17. Balogun MS, Qiu W, Wang W, Fang P, Lu X, Tong Y (2015) Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J Mater Chem A 3:1364–1387

    Article  CAS  Google Scholar 

  18. Wang X, Kim HM, Xiao Y, Sun YK (2016) Nanostructured metal phosphide-based materials for electrochemical energy storage. J Mater Chem A 4:14915–14931

    Article  CAS  Google Scholar 

  19. Peng S, Li L, Tan H, Cai R, Shi W, Li C, Mhaisalkar SG, Srinivasan M, Ramakrishna S, Yan Q (2014) MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Adv Funct Mater 24:2155–2162

    Article  CAS  Google Scholar 

  20. Meng Q, Cai K, Chen Y, Chen L (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285

    Article  CAS  Google Scholar 

  21. Liu Y, Jiang SP, Shao Z (2020) Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development. Mater Today Adv 7:100072

    Article  Google Scholar 

  22. Pal N (2020) Nanoporous metal oxide composite materials: a journey from the past, present to future. Adv Colloid Interf Sci 280:102156

    Article  CAS  Google Scholar 

  23. Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6:232–236

    Article  CAS  Google Scholar 

  24. Lee J, Seok JY, Son S, Yang M, Kang B (2017) High-energy, flexible micro-supercapacitors by one-step laser fabrication of a self-generated nanoporous metal/oxide electrode. J Mater Chem A 5:24585–24593

    Article  CAS  Google Scholar 

  25. Salunkhe RR, Kaneti YV, Yamauchi Y (2017) Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11:5293–5308

    Article  CAS  Google Scholar 

  26. Wang M (2017) Plasma-induced Nanoporous metal oxides with nitrogen doping for high-performance electrocatalysis. Nanotechnology 28:242501

    Article  CAS  Google Scholar 

  27. Topoglidis E, Campbell CJ, Palomares E, Durrant JR (2002) Photoelectrochemical study of Zn cytochrome-c immobilized on a nanoporous metal oxide electrode. Chem Commun 2:1518–1519

    Article  CAS  Google Scholar 

  28. Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373–2420

    Article  CAS  Google Scholar 

  29. Armatas GS, Kanatzidis MG (2009) Mesoporous germanium-rich chalcogenido frameworks with highly polarizable surfaces and relevance to gas separation. Nat Mater 8:217–222

    Article  CAS  Google Scholar 

  30. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129

    Article  CAS  Google Scholar 

  31. Hong F, Yue B, Hirao N, Liu Z, Chen B (2017) Significant improvement in Mn2O3transition metal oxide electrical conductivity via high pressure. Sci Rep 7:44078

    Article  Google Scholar 

  32. Coaty C, Zhou H, Liu H, Liu P (2018) A scalable synthesis pathway to nanoporous metal structures. ACS Nano 12:432–440

    Article  CAS  Google Scholar 

  33. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  CAS  Google Scholar 

  34. Huang J, Sumpter BG, Meunier V (2008) A Universal Model for Nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chem Eur J 14:6614–6626

    Article  CAS  Google Scholar 

  35. Xiao W, Yang S, Zhang P, Li P, Wu P, Li M, Chen N, Jie K, Huang C, Zhang N, Dai S (2018) Facile synthesis of highly porous metal oxides by mechanochemical nanocasting. Chem Mater 30:2924–2929

    Article  CAS  Google Scholar 

  36. Sayler FM, Grano AJ, Smått JH, Lindén M, Bakker MG (2014) Nanocasting of hierarchically porous Co3O4, Co, NiO, Ni, and Ag, monoliths: impact of processing conditions on fidelity of replication. Microporous Mesoporous Mater 184:141–150

    Article  CAS  Google Scholar 

  37. Antonelli DM, Ying JY (1995) Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method. Angew Chemie 34:2014–2017

    Article  CAS  Google Scholar 

  38. Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746

    Article  CAS  Google Scholar 

  39. Polarz S, Smarsly B (2002) Nanoporous materials. J Nanosci Nanotechnol 2:581–612

    Article  CAS  Google Scholar 

  40. Li C, Iqbal M, Lin J, Luo X, Jiang B, Malgras V, Wu KCW, Kim J, Yamauchi Y (2018) Electrochemical deposition: an advanced approach for templated synthesis of nanoporous metal architectures. Acc Chem Res 51:1764–1773

    Article  CAS  Google Scholar 

  41. Kim TK, Lee KJ, Cheon JY, Lee JH, Joo SH, Moon HR (2013) Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal-organic frameworks. J Am Chem Soc 135:8940–8946

    Article  CAS  Google Scholar 

  42. Lv H, Sun L, Lopes A, Xu D, Liu B (2019) Insights into compositional and structural effects of bimetallic hollow mesoporous nanospheres toward ethanol oxidation electrocatalysis. J Phys Chem Lett 10:5490–5498

    Article  CAS  Google Scholar 

  43. Lim E, Jo C, Lee J (2016) A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors. Nanoscale 8:7827–7833

    Article  CAS  Google Scholar 

  44. Szczęśniak B, Choma J, Jaroniec M (2020) Major advances in the development of ordered mesoporous materials. Chem Commun 56:7836–7848

    Article  Google Scholar 

  45. Wei J, Sun Z, Luo W, Li Y, Elzatahry AA, Al-Enizi AM, Deng Y, Zhao D (2017) New insight into the synthesis of large-pore ordered mesoporous materials. J Am Chem Soc 139:1706–1713

    Article  CAS  Google Scholar 

  46. Ahoulou S, Vilà N, Pillet S, Schaniel D, Walcarius A (2019) Coordination polymers as template for mesoporous silica films: a novel composite material Fe(Htrz)3@SiO2with remarkable electrochemical properties. Chem Mater 31:5796–5807

    Article  CAS  Google Scholar 

  47. Xiong H, Zhou H, Qi C, Liu Z, Zhang L, Zhang L, Qiao ZA (2020) Polymer-oriented evaporation induced self-assembly strategy to synthesize highly crystalline mesoporous metal oxides. Chem Eng J 398:125527

    Article  CAS  Google Scholar 

  48. Luc W, Jiao F (2016) Synthesis of nanoporous metals, oxides, carbides, and sulfides: beyond nanocasting. Acc Chem Res 49:1351–1358

    Article  CAS  Google Scholar 

  49. Nguyen K, Hoa ND, Hung CM, Thanh Le DT, Van Duy N, Van Hieu N (2018) A comparative study on the electrochemical properties of nanoporous nickel oxide nanowires and nanosheets prepared by a hydrothermal method. RSC Adv 8:19449–19455

    Article  CAS  Google Scholar 

  50. Zhao J, Tao Z, Liang J, Chen J (2008) Facile synthesis of nanoporous γ-MnO2structures and their application in rechargeable li-ion batteries. Cryst Growth Des 8:2799–2805

    Article  CAS  Google Scholar 

  51. Shao S, Dimitrov M, Guan N, Köhn R (2010) Crystalline nanoporous metal oxide thin films by post-synthetic hydrothermal transformation: SnO2 and TiO2. Nanoscale 2:2054–2057

    Article  CAS  Google Scholar 

  52. Wang Y, Xu H, Wang X, Zhang X, Jia H, Zhang L, Qiu J (2006) A general approach to porous crystalline TiO2, SrTiO3, and BaTiO3spheres. J Phys Chem B 110:13835–13840

    Article  CAS  Google Scholar 

  53. Xu G, Bai H, Huang X, He W, Li L, Shen G, Han G (2015) Self-assembled 3D flower-like perovskite PbTiO3nanostructures and their application in the catalytic oxidation of CO. J Mater Chem A 3:547–554

    Article  CAS  Google Scholar 

  54. Rumplecker A, Kleitz F, Salabas EL, Schüth F (2007) Hard templating pathways for the synthesis of nanostructured porous Co3O4. Chem Mater 19:485–496

    Article  CAS  Google Scholar 

  55. Tian ZR, Tong W, Wang JY, Duan NG, Krishnan VV, Suib SL (1997) Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts. Science 276:926–930

    Article  CAS  Google Scholar 

  56. Long C, Zheng M, Xiao Y, Lei B, Dong H, Zhang H, Hu H, Liu Y (2015) Amorphous Ni-Co binary oxide with hierarchical porous structure for electrochemical capacitors. ACS Appl Mater Interfaces 7:24419–24429

    Article  CAS  Google Scholar 

  57. Bayati MR, Zargar HR, Talimian A, Ziaee A, Molaei R (2010) Characterization of Al2O3-TiO2nano porous solar absorbers derived via MAO/sol gel hybrid process. Surf Coatings Technol 205:2483–2489

    Article  CAS  Google Scholar 

  58. Pan JH, Shen C, Ivanova I, Zhou N, Wang X, Tan WC, Xu QH, Bahnemann DW, Wang Q (2015) Self-template synthesis of porous perovskite titanate solid and hollow submicrospheres for photocatalytic oxygen evolution and mesoscopic solar cells. ACS Appl Mater Interfaces 7:14859–14869

    Article  CAS  Google Scholar 

  59. Xia X, Tu J, Zhang Y, Wang X, Gu C, Zhao XB, Fan HJ (2012) High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6:5531–5538

    Article  CAS  Google Scholar 

  60. Hu Y, Zhu H, Wang J, Chen Z (2011) Synthesis of layered birnessite-type manganese oxide thin films on plastic substrates by chemical bath deposition for flexible transparent supercapacitors. J Alloy Comp 509:10234–10240

    Article  CAS  Google Scholar 

  61. Xia XH, Tu JP, Wang XL, Gu CD, Zhao XB (2011) Hierarchically porous NiO film grown by chemical bath depositionvia a colloidal crystal template as an electrochemical pseudocapacitor material. J Mater Chem 21:671–679

    Article  CAS  Google Scholar 

  62. Inamdar AI, Kim Y, Pawar SM, Kim JH, Im H, Kim H (2011) Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. J Power Sources 196:2393–2397

    Article  CAS  Google Scholar 

  63. Zhao B, Wang T, Jiang L, Zhang K, Yuen MMF, Xu JB, Fu XZ, Sun R, Wong CP (2016) NiO mesoporous nanowalls grown on RGO coated nickel foam as high performance electrodes for supercapacitors and biosensors. Electrochim Acta 192:20–215

    Article  CAS  Google Scholar 

  64. Therese GHA, Kamath PV (2000) Electrochemical synthesis of metal oxides and hydroxides. Chem Mater 12:1195–1204

    Article  CAS  Google Scholar 

  65. Chou SL, Wang JZ, Liu HK, Dou SX (2008) Electrochemical deposition of porous Co3O4nanostructured thin film for lithium-ion battery. J Power Sources 182:359–364

    Article  CAS  Google Scholar 

  66. Huang C-M, Hu CC, Chang KH, Li JM, Li YF (2009) Pseudocapacitive characteristics of vanadium oxide deposits with a three-dimensional porous structure. J Electrochem Soc 156:A667

    Article  CAS  Google Scholar 

  67. Tsai YC, Yang WD, Lee KC, Huang CM (2016) An effective electrodeposition mode for porous MnO2/Ni foam composite for asymmetric supercapacitors. Materials 9:246

    Article  CAS  Google Scholar 

  68. Ishizaki K, Komarneni S, Nanko M (1998) Sol gel processing, designing porosity, pore size and polarity, and shaping processes, porous materials process technology and applications. Springer, pp 67–180

    Google Scholar 

  69. Anbia M, Fard SEM (2012) Humidity sensing properties of ce-doped nanoporous zno thin film prepared by sol gel method. J Rare Earths 30:38–42

    Article  CAS  Google Scholar 

  70. Heredia E, Bojorge C, Casanova J, Cánepa H, Craievich A, Kellermann G (2014) Nanostructured ZnO thin films prepared by sol gel spin-coating. Appl Surf Sci 317:19–25

    Article  CAS  Google Scholar 

  71. Jeyalakshmi K, Purushothaman KK, Muralidharan G (2013) Thickness dependent supercapacitor behaviour of sol gel spin coated nanostructured vanadium pentoxide thin films. Philos Mag 93:37–41

    Article  CAS  Google Scholar 

  72. Priyadharsini CI, Marimuthu G, Pazhanivel T, Anbarasan PM, Aroulmoji V, Siva V, Mohana L (2020) SolGel synthesis of Co3O4 nanoparticles as an electrode material for supercapacitor applications. J Sol Gel Sci Technol. https://www.springerprofessional.de/en/sol-gel-synthesis-of-Co3O4-nanoparticles-as-an-electrode-materia/18318898

  73. Liu Y, Wang N, Yang C, Hu W (2016) SolGel synthesis of nanoporous NiCo2O4thin films on ito glass as high-performance supercapacitor electrodes. Ceram Int 42:11411–11416

    Article  CAS  Google Scholar 

  74. Nwanya AC, Awada C, Obi D, Raju K, Ozoemena KI, Osuji RU, Ruediger A, Maaza M, Rosei F, Ezema FI (2017) Nanoporous copper-cobalt mixed oxide nanorod bundles as high performance pseudocapacitive electrodes. J Electroanal Chem 787:24–35

    Article  CAS  Google Scholar 

  75. Xie L, Li K, Sun G, Hu Z, Lv C, Wang J, Zhang C (2013) Preparation and electrochemical performance of the layered cobalt oxide (Co3O4) as supercapacitor electrode material. J Solid State Electrochem 17:55–61

    Article  CAS  Google Scholar 

  76. Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl Mater Interfaces 5:2188–2196

    Article  CAS  Google Scholar 

  77. Ismail E, Khamlich S, Dhlamini M, Maaza M (2016) Green biosynthesis of ruthenium oxide nanoparticles on nickel foam as electrode material for supercapacitor applications. RSC Adv 6:86843–86850

    Article  CAS  Google Scholar 

  78. Raut SS, Patil GP, Chavan PG, Sankapal BR (2016) Vertically aligned TiO2nanotubes: highly stable electrochemical supercapacitor. J Electroanal Chem 780:197–200

    Article  CAS  Google Scholar 

  79. Balasubramanian S, Purushothaman KK (2015) Carbon coated flowery V2O5nanostructure as novel electrode material for high performance supercapacitors. Electrochim Acta 186:285–291

    Article  CAS  Google Scholar 

  80. Wang J, Gao Z, Li Z, Wang B, Yan Y, Liu Q, Mann T, Zhang M, Jiang Z (2011) Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties. J Solid State Chem 184:1421–1427

    Article  CAS  Google Scholar 

  81. Deori K, Ujjain SK, Sharma RK, Deka S (2013) Morphology controlled synthesis of nanoporous co3o4 nanostructures and their charge storage characteristics in supercapacitors. ACS Appl Mater Interfaces 5:10665–10672

    Article  CAS  Google Scholar 

  82. Saravanakumar B, Purushothaman KK, Muralidharan G (2012) Interconnected V2O5nanoporous network for high-performance supercapacitors. ACS Appl Mater Interfaces 4:4484–4490

    Article  CAS  Google Scholar 

  83. Huang L, Yao B, Sun J, Gao X, Wu J, Wan J, Li T, Hu Z, Zhou J (2017) Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode. J Mater Chem A 5:2897–2903

    Article  CAS  Google Scholar 

  84. Kim BK, Chabot V, Yu A (2013) Carbon nanomaterials supported Ni(OH)2/NiO hybrid flower structure for supercapacitor. Electrochim Acta 109:370–380

    Article  CAS  Google Scholar 

  85. Sarkar A, Kumar Satpati A, Kumar V, Kumar S (2015) Sol gel synthesis of manganese oxide films and their predominant electrochemical properties. Electrochim Acta 167:126–131

    Article  CAS  Google Scholar 

  86. Cao P, Wang L, Xu Y, Fu Y, Ma X (2015) Facile hydrothermal synthesis of mesoporous nickel oxide/reduced graphene oxide composites for high performance electrochemical supercapacitor. Electrochim Acta 157:359–368

    Article  CAS  Google Scholar 

  87. Chen LY, Hou Y, Kang JL, Hirata A, Fujita T, Chen MW (2013) Toward the theoretical capacitance of RuO2reinforced by highly conductive nanoporous gold. Adv Energy Mater 3:851–856

    Article  CAS  Google Scholar 

  88. Yoshimura M, Byrappa K (2008) Hydrothermal processing of materials: past, present and future. J Mater Sci 43:2085–2103

    Article  CAS  Google Scholar 

  89. Aneesh PM, Vanaja KA, Jayaraj MK (2007) Synthesis of ZnO nanoparticles by hydrothermal method. Nanophoton Material Proc 6639:1–9. https://doi.org/10.1117/12.730364

    Article  Google Scholar 

  90. Gürbüz E, Aydin R, Şahin B (2018) A study of the influences of transition metal ( Mn, Ni) Co- doping on the morphological, structural and optical properties of nanostructured CdO films. J Mater Sci Mater Electron 29:1823–1831

    Article  CAS  Google Scholar 

  91. Switzer JA, Hodes G (2014) Electrodeposition and chemical bath deposition of functional nanomaterials. MRS Bull 35:743–750

    Article  Google Scholar 

  92. De Guire MR, Bauermann LP, Parikh H, Bill J (2013) Chemical bath deposition, in chemical solution deposition of functional oxide thin films. Springer, Vienna, pp 319–339

    Book  Google Scholar 

  93. Muresan LM (2015) Corrosion protective coatings for Ti and Ti alloys used for biomedical implants, in intelligent coatings for corrosion control. Butterworth-Heinemann, Boston, pp 585–602

    Book  Google Scholar 

  94. Thiagarajan S, Sanmugam A, Vikraman D (2017) Facile methodology of sol gel synthesis for metal oxide nanostructures. In: Recent applications in sol gel synthesis. InTech, pp 1–16

    Google Scholar 

  95. Yilmaz E, Soylak M (2020) Functionalized nanomaterials for sample preparation methods. In: Handbook of nanomaterials in analytical chemistry. Elsevier, pp 507–530

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul R. Salunkhe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, V.P., Kumar, N., Salunkhe, R.R. (2021). Nanoporous Metal Oxides for Supercapacitor Applications. In: Ezema, F.I., Lokhande, C.D., Jose, R. (eds) Chemically Deposited Nanocrystalline Metal Oxide Thin Films. Springer, Cham. https://doi.org/10.1007/978-3-030-68462-4_23

Download citation

Publish with us

Policies and ethics