Skip to main content

Role of Carbon Derivatives in Enhancing Metal Oxide Performances as Electrodes for Energy Storage Devices

  • Chapter
  • First Online:
Chemically Deposited Nanocrystalline Metal Oxide Thin Films

Abstract

Carbon derivatives like graphene oxide (GO), reduced graphene oxide (rGO), carbon nanotubes (CNTs) and several other derived materials have arose as favourable solution in enhancing the challenges facing renewable energy transformation and storing devices. The problems they had to solve are due to large specific surface area (SSA), great chemical stability, high electrical conductivity as well as extraordinary mechanical flexibility and strength. This chapter is an assemblage of some properties of carbon derivatives and metal oxide composites for enhancement of energy storage devices (batteries and supercapacitors). This chapter will explicitly study the role of carbon derivatives in upgrading the cycle stability, life span, storage capacity and non-toxic nature of electrodes for energy storage device applications. This study will evaluate the easiest and cheapest technique of fabrication of affordable, portable and available electrode materials for these energy storage devices based on carbon derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Obodo RM, Shinde NM, Chime UK, Ezugwu S, Nwanya AC, Ahmad I, Maaza M, Ezema FI (2020) Recent advances in metal oxide/hydroxide on three-dimensional nickel foam substrate for high performance pseudocapacitive electrodes. Curr Opin Electrochem 21:242–249

    Article  CAS  Google Scholar 

  2. Nwanya AC, Ndipingwi MM, Ikpo CO, Obodo RM, Nwanya SC, Botha S, Ezema FI, Iwuoha EI, Maaza M (2020) Zea mays lea silk extract mediated synthesis of nickel oxide nanoparticles as positive electrode material for asymmetric supercabattery. J Alloys Compd 822:153581

    Article  CAS  Google Scholar 

  3. Obodo RM, Nwanya AC, Hassina T, Kebede MA, Ahmad I, Maaza M, Ezema FI (2019) Transition metal oxides-based nanomaterials for high energy and power density supercapacitor. In: Electrochemical devices for energy storage applications. CRC, London, p 7

    Google Scholar 

  4. Aisida SO, Obodo RM, Arshad M, Mahmood I, Ahmad I, Ezemaa FI, Zhao TK, Malik M (2019) Irradiation-induced structural changes in ZnO nanowires. Nucl Inst Methods Phys Res B 458:61–71

    Article  CAS  Google Scholar 

  5. Dubey R, Guruviah V (2019) Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25(4):1419–1445

    Article  CAS  Google Scholar 

  6. Obodo RM, Onah EO, Nsude HE, Agbogu A, Nwanya AC, Ahmad I, Zhao T, Ejikeme PM, Maaza M, Ezema FI (2020) Performance evaluation of graphene oxide based Co3O4@GO, MnO2@GO and Co3O4/MnO2@GO electrodes for supercapacitors. Electroanalysis 32:1–10

    Article  CAS  Google Scholar 

  7. Obodo RM, Ahmad A, Jain GH, Ahmad I, Maaza M, Ezema FI (2020) 8.0 MeV Copper Ion (Cu++) Irradiation-induced effects on structural, electrical, optical and electrochemical properties of Co3O4-NiO-ZnO/GO nanowires. Mater Sci Energy Technol 3:193–200

    CAS  Google Scholar 

  8. Obodo RM, Ahmad I, Ezema FI (2019) Introductory chapter in graphene and its applications. Intechopen, Rijeka, p 86023

    Google Scholar 

  9. Saxena S, Hendricks C, Pecht M (2016) Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges. J Power Sources 327:394–400

    Article  CAS  Google Scholar 

  10. Waldmann T, Wilka M, Kasper M, Fleischhammer M, Wohlfahrt-Mehrens M (2014) Temperature dependent ageing mechanisms in Lithium-ion batteries – a post-mortem study. J Power Sources 262:129–135

    Article  CAS  Google Scholar 

  11. Sun Y, Saxena S, Pecht M (2018) Derating guidelines for lithium-ion batteries. Energies 11(2):3295

    Article  CAS  Google Scholar 

  12. Abdaha MAAM, Azman NHN, Kulandaivalua S, Sulaiman Y (2020) Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Des 186:108199

    Article  CAS  Google Scholar 

  13. Zimmerman H (2004) Self-discharge losses in lithium-ion cells. IEEE Aerosp Electron Syst Mag 19(2):19–24

    Article  Google Scholar 

  14. Akhavan O, Bijanzad K, Mirsepah A (2014) Synthesis of graphene from natural and industrial carbonaceous wastes. RSC Adv 4:20441–20448

    Article  CAS  Google Scholar 

  15. Ruan G, Sun Z, Peng Z, Tour JM (2011) Growth of graphene from food, insects, and waste. ACS Nano 5:7601–7607

    Article  CAS  Google Scholar 

  16. Zhu J, Sharma YK, Zeng Z, Zhang X, Srinivasan M, Mhaisalkar S, Zhang H, Hng HH, Yan Q (2011) Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-Ion battery electrodes. Phys Chem C 115:8400–8406

    Article  CAS  Google Scholar 

  17. Xia XH, Tu JP, Zhang YQ, Mai YJ, Wang XL, Gu CD, Zhao XB (2011) Three-dimentional porous nano-Ni/Co(OH)2 nanoflake composite film: a pseudocapacitive material with superior performance. J Phys Chem C 115(45):22662–22668

    Article  CAS  Google Scholar 

  18. Vuorilehto K, Nuutinen Bautzen M (2014) Supercapacitors basics and applications. http://www.skeletontechnologies.com

  19. Iqbal N, Wang X, Ge J, Yu J, Kim HY, Al-Deyab SS, El-Newehy M, Din B (2016) Cobal oxide nanoparticles embedded in flexible carbon nanofibres: attractive material for supercapacitor electrodes and CO2 adsorption. RSC Adv 6(57):52171–52179

    Article  CAS  Google Scholar 

  20. Kim SH, Kim YI, Park JH, Ko JM (2009) Cobalt-manganese oxide/carbon-nanofibre composite electrodes for supercapacitors. Int J Electrochem Sci 4(11):1489–1496

    CAS  Google Scholar 

  21. Qu J, Shi L, He C, Gao F, Li B, Zhou Q, Hu H, Shao G, Wang X, Qiu J (2014) Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue. Carbon 66:485–492

    Article  CAS  Google Scholar 

  22. Yu N, Yin H, Zhang W, Liu Y, Tang Z, Zhu MQ (2016) High-performance fibre-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet carbon fibre cathodes for wearable electronic. Adv Energy Mater 6(2):1501458

    Article  CAS  Google Scholar 

  23. Yang Y, Lee SS, Brown DE, Zhao H, Li X, Jiang D, Hao S, Zhao Y, Cong D, Zhang X, Ren Y (2016) Fabrication of ultrafine manganese oxide-decorated carbon nanofibres fo high-performance electrochemical capacitors. Electrochim Acta 211:524–532

    Article  CAS  Google Scholar 

  24. Chen Y, Hu W, Gan H, Wang J-W, Shi X-C (2017) Enhancing high-rate capability of MnO2 film electrodeposited on carbon fibres via hydrothermal treatment. Electrochim Acta 246(Suppl C):890–896

    Article  CAS  Google Scholar 

  25. Klankowski SA, Pandey GPGP, Malek G, Thomas CR, Bernasek SL, Wu J, Li L (2015) Higher power supercapacitor electrodes based on mesoporous manganese oxide coating on vertically aligned carbon nanofibres. Nanoscale 7(18):8485–8494

    Article  CAS  Google Scholar 

  26. Zhang S, Pang Y, Wang Y, Dong B, Lu S, Li M, Ding M (2018) NiO nanosheets anchored on honeycomb porous carbon derived from wheat husk for symmetric supercapacitor with high performance. J Alloys Compd 735:1722–1729

    Article  CAS  Google Scholar 

  27. Ren B, Fan M, Liu Q, Wang J, Song D, Bai X (2013) Hollow NiO nanofibres modified by citric acid and the performances as supercapacitor electrode. Electrochim Acta 92:197–204

    Article  CAS  Google Scholar 

  28. Li Q, Guo J, Xu D, Guo J, Ou X, Hu Y, Qi H, Yan F (2018) Electrospun N-doped porous carbon nanofibres incorporated with NiO nanoparticles as free-standing film electrodes for high-performance supercapacitors and CO2 capture. Small 14(15):e1704203

    Article  CAS  Google Scholar 

  29. Zhou D, Lin H, Zhang F, Niu H, Cui L, Wang Q, Qu F (2015) Freestanding MnO nanoflakes/porous carbonnanofibres for high-performanceflexiblesupercapacitor electrodes. Electrochim Acta 161:427–435

    Article  CAS  Google Scholar 

  30. Xu K, Li S, Yang J, Hu J (2018) Hierarchical hollow MnO2 nanofibres with enhanced supercapacitor performance. J Colloid Interface Sci 513:448–454

    Article  CAS  Google Scholar 

  31. Zhao B, Liu P, Jiang Y, Pan D, Tao H, Song J, Fang T, Xu W (2012) Supercapacitor performances of thermally reduced graphene oxide. J Power Sources 198:423–427

    Article  CAS  Google Scholar 

  32. Kim DW, Rhee KY, Park SJ (2012) Synthesis of activated carbon nanotube/copper oxide composites and their electrochemical performance. J Alloys Compd 530:6–10

    Article  CAS  Google Scholar 

  33. Huang XH, Xia XH, Yuan YF, Zhou F (2011) Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim Acta 56:4960–4965

    Article  CAS  Google Scholar 

  34. Chae OB, Park S, Ryu JH, Oh SM (2013) Performance improvement of nano-sized zinc oxide electrode by embedding in carbon matrix for lithium-ion batteries. J Electrochem Soc 160:A11–A14

    Article  CAS  Google Scholar 

  35. Lee S, Cho Y, Song H-K, Lee KT, Cho J (2012) Carbon-coated high-energy and high-power lithium-ion batteries. Angew Chem Int Ed 51:8748–8752

    Article  CAS  Google Scholar 

  36. Wang H, Cui L-F, Yang Y, Casalongue HS, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4–graphene hybrid as a high-capacity anode material for Lithium Ion batteries. J Am Chem Soc 132:13978–13980

    Article  CAS  Google Scholar 

  37. Wang J, Sun X (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5:5163–5185

    Article  CAS  Google Scholar 

  38. Chen Y-L, Hu Z-A, Chang Y-Q, Wang H-W, Zhang Z-Y, Yang Y-Y, Wu H-Y (2011) Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homoge-neous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J Phys Chem C 115:2563–2571

    Article  CAS  Google Scholar 

  39. Hsieh C-T, Lin C-Y, Chen Y-F, Lin J-S (2013) Synthesis of ZnO@Graphene composites as anode materials for lithium ion batteries. Electrochim Acta 111:359–365

    Article  CAS  Google Scholar 

  40. Wang H, Pana Q, Cheng Y, Zhao J, Yin G (2009) Novel composite thick-film electrodes consisted of zinc oxide and silicon for lithium-ion battery anode. Electrochim Acta 54:2851

    Article  CAS  Google Scholar 

  41. Xie J, Imanishi N, Hirano A, Takeda Y, Yamamoto O, Zhao XB, Cao GS (2011) Determination of Li-ion diffusion coefficient in amorphous Zn and ZnO thin films prepared by radio frequency magnetron sputtering. Thin Solid Films 519:3373

    Article  CAS  Google Scholar 

  42. Obodo RM, Nwanya AC, Arshad M, Iroegbu C, Ahmad I, Osuji RU, Maaza M, Ezema FI (2020) Conjugated NiO-ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material. Int J Energy Res 44:3192–3202

    Article  CAS  Google Scholar 

  43. Obodo RM, Nwanya AC, Iroegbu C, Ahmad I, Ekwealor ABC, Osuji RU, Maaza M, Ezema FI (2020) Transformation of GO to rGO due to 8.0 MeV carbon (C++) ions irradiation and characteristics performance on MnO2–NiO–ZnO@GO electrode. Int J Energy Res 44:6792–6803

    Article  CAS  Google Scholar 

  44. Obodo RM, Nwanya AC, Iroegbu C, Ezekoye BA, Ekwealor ABC, Ahmad I, Maaza M, Ezema FI (2020) Effects of swift copper (Cu2+) ion irradiation on structural, optical and electrochemical properties of Co3O4-CuO-MnO2/GO nanocomposites powder. Adv Powder Technol 31:1728

    Article  CAS  Google Scholar 

  45. Luo J, Zhao X, Wu J, Jang H et al (2012) Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J Phys Chem Lett 3(13):1824–1829

    Article  CAS  Google Scholar 

  46. Yan Z, Li H et al (2018) Pt nanoparticles decorated high-defective graphene nanospheres as highly efficient catalysts for the hydrogen evolution reaction. Carbon 137:405–410

    Article  CAS  Google Scholar 

  47. Feng H-P, Tang L, Zeng G-M, Tang J, Deng Y-C, Yan M, Liu Y-N, Zhou Y-Y, Ren X-Y, Chena S (2018) Carbon-based core–shell nanostructured materials for electrochemical energy storage. J Mater Chem A 6:7310

    Article  CAS  Google Scholar 

  48. Zhu G, He Z, Chen J, Zhao J, Feng X, Ma Y, Sun P, Wang L, Huang W (2014) Highly conductive three-dimensional MnO2–carbon nanotube–graphene–Ni hybrid foam as a binder-free supercapacitor electrode. Nanoscale 6:1079–1085

    Article  CAS  Google Scholar 

  49. Özcan S, Güler A, Cetinkaya T, Guler MO, Akbulut H (2017) Freestanding graphene/MnO2 cathodes for Li-ion batteries. Beilstein J Nanotechnol 8:1932–1938

    Article  CAS  Google Scholar 

  50. Hou YK, Pan GL, Sun YY, Gao XP (2018) LiMn0.8Fe0.2PO4/carbon nanospheres@graphene nanoribbons prepared by the biomineralization process as the cathode for lithium-ion batteries. ACS Appl Mater Interfaces 10:16500–16510

    Article  CAS  Google Scholar 

  51. Zhang J, Yang X, He Y, Bai Y, Kang L, Xu H et al (2016) δ-MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor. J Mater Chem A 4:9088–9096

    Article  CAS  Google Scholar 

  52. Jeong YC, Kim JH, Kwon SH, Oh JY, Park J, Jung Y et al (2017) Rational design of exfoliated 1T MoS2@CNT-based bifunctional separators for lithium sulfur batteries. J Mater Chem A 5:23909–23918

    Article  CAS  Google Scholar 

  53. Ma W, Chen S, Yang S, Chen W, Cheng Y, Guo Y, Peng S, Ramakrishna S, Zhu M-F (2016) Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors. J Power Sources 306:481–488

    Article  CAS  Google Scholar 

  54. Kumar N, Rodriguez JR, Pol VG, Sen A (2019) Facile synthesis of 2D graphene oxide sheet enveloping ultrafine 1D LiMn2O4 as interconnected framework to enhance cathodic property for Li-ion battery. Appl Surf Sci 463:132–140

    Article  CAS  Google Scholar 

  55. Cao X, Zheng X, Shi B, Yang W, Fan JJ, Luo Z, Rui X, Chen B, Yan Q, Zhang H (2015) Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv Mater 27:4695–4701

    Article  CAS  Google Scholar 

  56. Chen C, Perdomo PJ, Fernandez M, Barbeito A, Wang C (2016) Porous NiO/graphene composite thin films as high performance anodes for lithium-ion batteries. J Energy Storage 8:198–204

    Article  Google Scholar 

  57. Modi SS, Verma N (2016) In situ nitrogen-doping of nickel nanoparticle-dispersed carbon nanofiber-based electrodes: its positive effects on the performance of a microbial fuel cell. Electrochim Acta 190:620–627

    Article  CAS  Google Scholar 

  58. Wu P, Cheng S, Yao M, Yang L, Zhu Y, Liu P, Xing O, Zhou J, Wang M, Luo H et al (2017) A low-cost, self-standing NiCo2O4@CNT/CNT multilayer electrode for flexible asymmetric solid-state supercapacitors. Adv Funct Mater 27:27

    Article  Google Scholar 

  59. Xie J, Sun X, Zhang N, Xu K, Zhou M, Xie Y (2013) Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy 2:65–74

    Article  CAS  Google Scholar 

  60. Siwal SS, Zhang Q, Sun C, Thakur V (2019) Graphitic carbon nitride doped copper-manganese alloy as high-performance electrode material in supercapacitor for energy storage. Nanomaterials 10:2

    Article  CAS  Google Scholar 

  61. Chen J, Xu J, Zhou S, Zhao N, Wong CP (2015) Facile and scalable fabrication of three-dimensional Cu(OH)2 nanoporous nanorods for solid-state supercapacitors. J Mater Chem A 3:17385–17391

    Article  CAS  Google Scholar 

  62. Niu H, Yang X, Jiang H, Zhou D, Li X, Zhang T, Liu J, Wang Q, Qu F (2015) Hierarchical core–shell heterostructure of porous carbon nanofiber@ZnCo2O4 nanoneedle arrays: advanced binder-free electrodes for all-solid-state supercapacitors. J Mater Chem A 3:24082–24094

    Article  CAS  Google Scholar 

  63. Wang KX, Wang YG, Wang YR, Hosono E, Zhou HS (2009) Mesoporous carbon nanofibers for supercapacitor application. J Phys Chem C 113(3):1093–1097, 2009

    Article  CAS  Google Scholar 

  64. Obodo RM, Nwanya AC, Ekwealor ABC, Ahmad I, Zhao T, Maaza M, Ezema F (2019) Influence of pH and annealing on the optical and electrochemical properties of cobalt (III) oxide (Co3O4) thin films. Surf Interf 16:114–119

    Article  CAS  Google Scholar 

  65. Qin T, Peng S, Hao J, Wen Y, Wang Z, Wang X, He D, Zhang J, Hou J, Cao G (2017) Flexible and wearable all-solid-state supercapacitors with ultrahigh energy density based on a carbon fiber fabric electrode. Adv Energy Mater 7:1700409

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian I. Ezema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Obodo, R.M., Nwanya, A.C., Ike, I.S., Ahmad, I., Ezema, F.I. (2021). Role of Carbon Derivatives in Enhancing Metal Oxide Performances as Electrodes for Energy Storage Devices. In: Ezema, F.I., Lokhande, C.D., Jose, R. (eds) Chemically Deposited Nanocrystalline Metal Oxide Thin Films. Springer, Cham. https://doi.org/10.1007/978-3-030-68462-4_18

Download citation

Publish with us

Policies and ethics