Skip to main content

Fungal Secondary Metabolites for Bioremediation of Hazardous Heavy Metals

  • Chapter
  • First Online:
Recent Trends in Mycological Research

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Bioremediation is a biological method for the conversion of the toxic, recalcitrant pollutants into their nontoxic or environmentally benign products. This is a cost-effective and environment-friendly method for waste management. Taking into consideration the robust morphology and diverse metabolic capacity of fungi, it plays a major role in bioremediation. Diverse fungal groups from different habitats have an immense potential to treat variety of toxic and recalcitrant compounds. The current chapter focuses on the crucial role of fungi in bioremediation of persistent organic pollutants, textile dyes, effluents from textile, bleached kraft pulp, leather tanning industries, petroleum, polyaromatic hydrocarbons, pesticides, pharmaceuticals, and personal care products. Fungi-based bioremediation of toxic organics is by far the most economical, efficient, as well as sustainable and green route for cleanup of contaminated sites. In the current chapter fungal mechanism as well as different modes involved by them for detoxification of different toxic and recalcitrant compounds has been discussed followed by the role of prominent fungal enzymes, viz., catalases, laccases, peroxidases, and cytochrome P450 monooxygenases. Recent techniques of enzyme engineering and genomics have been highlighted to unravel less understood bioremediation pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar S, Mahmood-ul-Hassan M, Ahmad R, Suthor V, Yasin M (2013) Metal tolerance potential of filamentous fungi isolated from soils irrigated with untreated municipal effluent. Soil Environ 32:55–62

    CAS  Google Scholar 

  • Anastasi A, Spina F, Prigione V, Tigini V, Giansanti P, Varese GC (2010) Scale-up of a bioprocess for textile wastewater treatment using Bjerkandera adusta. Bioresour Technol 101:3067–3075

    Article  CAS  PubMed  Google Scholar 

  • Anastasi A, Tigini V, Varese GC (2013) The bioremediation potential of different ecophysiological groups of fungi. In: Goltapeh EM et al (eds) Fungi as bioremediators. Soil Biol 32:29–49

    Article  CAS  Google Scholar 

  • Aranda E (2016) Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr Opin Biotechnol 38:1–8

    Article  CAS  PubMed  Google Scholar 

  • Aranda E, Scervino JM, Godoy P, Reina R, Ocampo JA, Wittich R-M, Garcıa-Romera I (2013) Role of arbuscular mycorrhiza fungus Rhizophagus custos in the dissipation of PAHs under root-organ culture conditions. Environ Pollut 181:182–189

    Article  CAS  PubMed  Google Scholar 

  • Asamudo NU, Daba AS, Ezeronye OU (2005) Bioremediation of textile effluent using Phanerochaete chrysosporium. African J Biotechnol 4:1548–1553

    CAS  Google Scholar 

  • Asgher M, Yasmeen Q, Iqbal HMN (2013) Enhanced decolorization of solar brilliant red 80 textile dye by an indigenous white-rot fungus Schizophyllum commune IBL-06. Saudi J Biol Sci 20:347–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badia-Fabregat M, Lucas D, Gros M, Rodriguez-Mozaz S, Barcelo D, Caminal G, Vicent T (2015) Identification of some factors affecting pharmaceutical active compounds (PhACs) removal in real wastewater. Case study of fungal treatment of reverse osmosis concentrate. J Hazard Mater 283:663–671

    Article  CAS  PubMed  Google Scholar 

  • Baker PW, Charlton A, Hale MD (2015) Increased delignification by white-rot fungi after pressure refining Miscanthus. Bioresour Technol 189:81–86

    Article  CAS  PubMed  Google Scholar 

  • Baker S, Harini BP, Rakshith D, Satish S (2013) Marine microbes: invisible nanofactories. J Pharm Res 6:383–388

    CAS  Google Scholar 

  • Balaji V, Arulazhagan P, Ebenezer P (2014) Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. J Environ Biol 35:521–529

    CAS  PubMed  Google Scholar 

  • Baratto MC, Juarez-Moreno K, Pogni R, Basosi R, Vazquez-Duhalt R (2015) EPR and LC-MS studies on the mechanism of industrial dye decolourization by versatile peroxidase from Bjerkandera adusta. Environ Sci Pollut Res 22:8683–8692

    Article  CAS  Google Scholar 

  • Bayramoglu G, Arica MY (2013) Removal of reactive dyes from wastewater by acrylate polymer beads bearing amino groups: isotherm and kinetic studies. Color Technol 129:114–124

    Article  CAS  Google Scholar 

  • Bennett RM, Cordero PRF, Bautista GS, Dedeles GR (2013) Reduction of hexavalent chromium using fungi and bacteria isolated from contaminated soil and water samples. Chem Ecol 29:320–328

    Article  CAS  Google Scholar 

  • Betancor L, Johnson GR, Luckarift HR (2013) Stabilized laccases as heterogeneous bio electrocatalysts. Chem Cat Chem 5:46–60

    CAS  Google Scholar 

  • Bhattacharya SS, Syed K, Shann J, Yadav JS (2013) A novel P450-initiated biphasic process for sustainable biodegradation of benzo[a]pyrene in soil under nutrient-sufficient conditions by the white-rot fungus Phanerochaete chrysosporium. J Hazard Mater 261:675–683

    Article  CAS  PubMed  Google Scholar 

  • Blanquez P, Sarra A, Vicent T (2008) Development of a continuous process to adapt the textile wastewater treatment by fungi to industrial conditions. Process Biochem 43:1–7

    Article  CAS  Google Scholar 

  • Bonugli-Santos RC, Dos Santos Vasconcelos MR, Passarini MR, Vieira GAL, Lopes VCP, Mainardi PH, Dos Santos JA, Azevedo Duarte LD, Otero IVR, Da Silva Yoshida AM, Feitosa VA, Pessoa A Jr, Sette LD (2015) Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol 6:1–15

    Article  Google Scholar 

  • Bonugli-Santos RC, Durrant LR, Sette LD (2012) The production of ligninolytic enzymes by marine-derived Basidiomycetes and their biotechnological potential in the biodegradation of recalcitrant pollutants and the treatment of textile effluents. Water Air Soil Pollut 223:2333–2345

    Article  CAS  Google Scholar 

  • Buvaneswari S, Damodarkumar S, Murugesan S (2013) Bioremediation studies on sugar-mill effluent by selected fungal species. Int J Curr Microbiol App Sci 2:50–58

    Google Scholar 

  • Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Weerasinghe D, Zhang P, Karp PD (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyccollection of pathway/genome databases. Nucleic Acids Res 42:D459–D471

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Mukherjee A, Das TK (2013) Biochemical characterization of a lead-tolerant strain of Aspergillus foetidus: an implication of bioremediation of lead from liquid media. Int Biodeterior Biodegradation 84:134–142

    Article  CAS  Google Scholar 

  • Chang YS (2008) Recent developments in microbial biotransformation and biodegradation of dioxins. J Mol Microbiol Biotechnol 15:152–171

    CAS  PubMed  Google Scholar 

  • Chang YT, Lee JF, Liu KH, Liao YF, Yang V (2015) Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-015-4248-6

  • Chhaya U, Gupte A (2013) Possible role of laccase from Fusarium incarnatum UC-14 in bioremediation of Bisphenol a using reverse micelles system. J Hazard Mater 254–255:149–156

    Article  PubMed  CAS  Google Scholar 

  • Claus H (2014) Microbial degradation of 2,4,6-trinitrotoluene in vitro and in natural environments. In: Singh SN (ed) Biological remediation of explosive residues, environmental science and engineering. Springer, Switzerland, pp 15–38

    Google Scholar 

  • Cobas M, Ferreira L, Tavares T, Sanroman MA, Pazos M (2013) Development of permeable reactive biobarrier for the removal of PAHs by Trichoderma longibrachiatum. Chemosphere 91:711–716

    Article  CAS  PubMed  Google Scholar 

  • Connel L, Staudigel H (2013) Fungal diversity in a dark oligotrophic volcanic ecosystem (DOVE) on mount Erebus, Antarctica. Biology 2:798–809

    Article  Google Scholar 

  • Cutright TJ, Erdem Z (2012) Overview of the bioremediation and the degradation pathways of DDT. J Adnan Menderes Univ Agric Fac 9:39–45

    Google Scholar 

  • Damare S, Singh P, Raghukumar S (2012) Biotechnology of marine fungi. Prog Mol Subcell Biol 53:277–297

    Article  PubMed  Google Scholar 

  • Das D, Chakraborty A, Bhar S, Sudarshan M, Santra SC (2013) Gamma irradiation in modulating cadmium bioremediation potential of Aspergillus sp. IOSR J Environ Sci Toxicol Food Technol 3:51–55

    Article  CAS  Google Scholar 

  • Desai C, Pathak H, Madamwar D (2010) Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresour Technol 101:1558–1569

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of Fungi for bioremediation. Indian J Microbiol 56:247–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi R, Kaur T, Guleria G, Rana K, Kour D, Yadav N et al (2020a) Fungal secondary metabolites and their biotechnological application for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 147–161. https://doi.org/10.1016/B978-0-12-820528-0.00010-7

    Chapter  Google Scholar 

  • Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020b) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microbial Biosyst 5:21–47. https://doi.org/10.21608/mb.2020.32802.1016

    Article  Google Scholar 

  • Dhakar K, Jain R, Tamta S, Pandey A (2014) Prolonged laccase production by a cold and pH tolerant strain of Penicillium pinophilum (MCC 1049) isolated from a low temperature environment. Enzyme Res. https://doi.org/10.1155/2014/120708

  • Dhiman SS, Garg G, Sharma J, Kalia VC, Kang YC, Lee JK (2014) Reduction in acute ecotoxicity of paper mill effluent by sequential application of xylanase and laccase. PLoS One 9:e102581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhiman SS, Haw JR, Kalyani D, Kalia VC, Kang YC, Lee JK (2015) Simultaneous pretreatment and saccharification: green technology for enhanced sugar yields from biomass using a fungal consortium. Bioreosur Technol 179:50–57

    Article  CAS  Google Scholar 

  • Divya LM, Prasanth GK, Sadasivan C (2013) Potential of the salt-tolerant laccase-producing strain Trichoderma viride Pers. NFCCI-2745 from an estuary in the bioremediation of phenol polluted environments. J Basic Microbiol 54:542–547

    Article  PubMed  CAS  Google Scholar 

  • Dos Santos Bazanella GC, Araujo AV, Castoldi R, Maciel GM, Inacio FD, de Souza CGM, Bracht A, Peralta RM (2013) Ligninolytic enzymes from white-rot fungi and application in the removal of synthetic dyes. In: Polizeli TM, Rai M, De Lourdes M (eds) Fungal enzymes. CRC Press, Boca Raton, pp 258–279

    Google Scholar 

  • Dos Santos YVS, Freire DA, Pinheiro SB, de Lima LF, de Souza JVB, Cavallazzi JRP (2015) Production of laccase from a white-rot fungi isolated from the Amazon forest for oxidation of Remazol brilliant blue-R. Sci Res Essays 10:132–136

    Article  Google Scholar 

  • Duarte K, Justino CI, Pereira R, Panteleitchouk TS, Freitas AC, Rocha-Santos TA, Duarte AC (2013) Removal of the organic content from a bleached Kraft pulp mill effluent by a treatment with silica–alginate–fungi biocomposites. J Environ Sci Heal A Tox Hazard Subst Environ Eng 48:166–172

    Article  CAS  Google Scholar 

  • Durairaj P, Malla S, Nadarajan SP, Lee PG, Jung E, Park HH, Kim BG, Yun H (2015) Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of x-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb Cell Factories 14:45

    Article  CAS  Google Scholar 

  • Fan B, Zhao Y, Mo G, Ma W, Wu J (2013) Co-remediation of DDT-contaminated soil using white-rot fungi and laccase extract from white-rot fungi. J Soils Sediments 13:1232–1245

    Article  CAS  Google Scholar 

  • Fernandez-Fueyo E, Ruiz-Duenas FJ, Martınez AT (2014) Engineering a fungal peroxidase that degrades lignin at very acidic pH. Biotechnol Biofuels 7:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferraz ERA, Oliveira GAR, Grando MD, Lizier TM, Zanoni MVB, Oliveira DP (2013) Photoelectrocatalysis based on Ti/ TiO2 nanotubes removes toxic properties of the azo dyes disperse red 1, disperse red 13 and disperse Orange 1 from aqueous chloride samples. J Environ Manag 124:108–114

    Article  CAS  Google Scholar 

  • Fester T (2013) Arbuscular mycorrhizal fungi in a wetland constructed for benzene-, methyl tert-butyl ether- and ammonia contaminated groundwater bioremediation. Microb Biotechnol 6:80–84

    Article  PubMed  CAS  Google Scholar 

  • Fillat U, Prieto A, Camararo S, Martinez AT, Martinez MJ (2012) Biodeinking of flexographic inks by fungal laccases using synthetic and natural mediators. Biochem Eng J 67:97–103

    Article  CAS  Google Scholar 

  • Fonseca MI, Farina JI, Sanabria NI, Villalba LL, Zapata PD (2013) Influence of culture conditions on laccase production, growth and isoenzyme patterns in native white-rot fungi from the Misiones rainforest. Bio Resources 8:2855–2866

    Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    Article  CAS  Google Scholar 

  • Gao GR, Yin YF, Yang DY, Yang DF (2013) Promoting behavior of fungal degradation polychlorinated biphenyl by Maifanite. Adv Mater Res 662:515–519

    Article  CAS  Google Scholar 

  • Garg N, Bhandari P (2014) Cadmium toxicity in crop plants and its alleviation by arbuscular mycorrhizal (AM) fungi: an overview. Plant Biosyst 148:609–621

    Article  Google Scholar 

  • Gazem MAH, Nazareth S (2013) Sorption of lead and copper from an aqueous phase system by marine-derived Aspergillus species. Ann Microbiol 63:503–511

    Article  CAS  Google Scholar 

  • Gillespie IMM, Philip JC (2013) Bioremediation, an environmental remediation technology for the bioeconomy. Trends Biotechnol 31:329–332

    Article  CAS  PubMed  Google Scholar 

  • Guengerich FP, Munro AW (2013) Unusual cytochrome P450 enzymes and reactions. J Biol Chem 288:17065–17073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulu D, Donmez G (2013) Application of mixed fungal biomass for effective reactive dye removal from textile effluents. Desalin Water Treat 51:3597–3603

    Article  CAS  Google Scholar 

  • Habib K, Schmidt JH, Christensen P (2013) A historical perspective of global warming potential from municipal solid waste management. Waste Manag 33:1926–1933

    Article  PubMed  Google Scholar 

  • Hadibarata T, Zubir MM, Rubiyabto TZ, Chuang TZ, Yusoff AR, Fulazzaky MA, Seng B, Nugroho AE (2013) Degradation and transformation of anthracene by white-rot fungus Armillaria sp. F022. Folia Microbiol 58:385–391

    Article  CAS  Google Scholar 

  • Hai FI, Yamamoto K, Nakajima F, Fukushi K, Nghiem LD, Price WE, Jin B (2013) Degradation of azo dye acid orange 7 in a membrane bioreactor by pellets and attached growth of Coriolus versicolor. Bioresour Technol 141:29–34

    Article  CAS  PubMed  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  PubMed  Google Scholar 

  • Hattori T, Hisamori H, Suzuki S, Umezawa T, Yoshimura T, Sakai H (2015) Rapid copper transfer and precipitation by wood-rotting fungi can effect copper removal from copper sulfate-treated wood blocks during solid-state fungal treatment. Int Biodeterior Biodegradation 97:195–201

    Article  CAS  Google Scholar 

  • Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618

    Article  CAS  PubMed  Google Scholar 

  • He L, Huang H, Zhang Z, Lei Z (2015) A review of hydrothermal pretreatment of lignocellulosic biomass for enhanced biogas production. Curr Org Chem 19:437–446

    Article  CAS  Google Scholar 

  • Hickey P (2013) Toxicity of water soluble fractions of crude oil on some bacteria and fungi isolated from marine water. Am J Anim Res 3:24–29

    Google Scholar 

  • Hofrichter M, Ullrich R (2014) Oxidations catalyzed by fungal peroxygenases. Curr Opin Chem Biol 19:116–125

    Article  CAS  PubMed  Google Scholar 

  • Howells G (1990) Acid rain and acid waters. Ellis Horwood series in environmental science. Ellis Horwood Ltd, New York, pp 134–136

    Google Scholar 

  • Huang J, Fu Y, Liu Y (2014) Comparison of alkali-tolerant fungus Myrothecium sp. IMER1 and white-rot fungi for decolorization of textile dyes and dye effluents. J Bioremed Biodegr 5:1–5

    Google Scholar 

  • Ichinose H (2013) Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnol Appl Biochem 60:71–81

    Article  CAS  PubMed  Google Scholar 

  • Ikehata K (2015) Use of fungal laccases and peroxidases for enzymatic treatment of wastewater containing synthetic dyes. Green Chem Dyes Remov Wastewater Res Trends Appl.

    Google Scholar 

  • Janveja C, Rana SS, Soni SK (2013) Environmentally acceptable management of kitchen waste residues by using them as substrates for the co-production of a cocktail of fungal carbohydrases. Int J Chem Env Eng Syst 4:20–29

    Google Scholar 

  • Jebapriya GR, Gnanadoss JJ (2013) Bioremediation of textile dye using white-rot fungi: a review. Int J Curr Res Rev 5:1–13

    Google Scholar 

  • Kallio JP, Gasparetti C, Andberg M, Boer H, Koivula A, Kruus K et al (2011) Crystal structure of an ascomycete fungal laccase from Thielavia arenaria–common structural features of ascolaccases. FEBS J 278:2283–2295

    Article  CAS  PubMed  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res. https://doi.org/10.4061/2011/805187

  • Kataoka R, Takagi K, Kamei I, Kiyota H, Sato Y (2010) Biodegradation of dieldrin by a soil fungus isolated from a soil with annual endosulfan applications. Environ Sci Technol 44:6343–6349

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan K, Nabeel MA, Srimahibala P, Asmathunisha N, Saravanakumar K (2010) Analysis of antimicrobial silver nanoparticles synthesized by coastal strains E. coli and A. niger. Can J Microbiol 56:1050–1059

    Article  CAS  PubMed  Google Scholar 

  • Kaushik P, Malik A (2009) Fungal dye decolourization: recent advances and future potential. Environ Int 35:127–141

    Article  CAS  PubMed  Google Scholar 

  • Khardenavis A, Wang JY, Ng WJ, Purohit HJ (2013) Management of various organic fractions of municipal solid waste via recourse to VFA and biogas generation. Environ Technol 34:2085–2097

    Article  PubMed  CAS  Google Scholar 

  • Kiran S, Ali S, Asgher M (2013) Degradation and mineralization of azo dye reactive blue 222 by sequential photo-Fenton’s oxidation followed by aerobic biological treatment using whiterot fungi. Bull Environ Contam Toxicol 90:208–215

    Article  CAS  PubMed  Google Scholar 

  • Kour D, Rana KL, Kaur T, Singh B, Chauhan VS, Kumar A et al (2019a) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh B, Gathergood N (eds) Bioprocessing for biomolecules production, pp 321–372. https://doi.org/10.1002/9781119434436.ch16

    Chapter  Google Scholar 

  • Kour D, Rana KL, Kumar R, Yadav N, Rastegari AA, Yadav AN et al (2019b) Gene manipulation and regulation of catabolic genes for biodegradation of biphenyl compounds. In: Singh HB, Gupta VK, Jogaiah S (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 1–23. https://doi.org/10.1016/B978-0-444-63503-7.00001-2

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019c) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for value-added products and environments, vol 2. Springer, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kumar A, Chaturvedi AK, Yadav K, Arunkumar KP, Malyan SK, Raja P et al (2019a) Fungal phytoremediation of heavy metal-contaminated resources: current scenario and future prospects. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for sustainable environments, vol 3. Springer, Cham, pp 437–461. https://doi.org/10.1007/978-3-030-25506-0_18

    Chapter  Google Scholar 

  • Kumar M, Saxena R, Rai PK, Tomar RS, Yadav N, Rana KL et al (2019b) Genetic diversity of methylotrophic yeast and their impact on environments. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for sustainable environments, vol 3. Springer, Cham, pp 53–71. https://doi.org/10.1007/978-3-030-25506-0_3

    Chapter  Google Scholar 

  • Kurniati E, Arfarita N, Imai T, Higuchi T, Kanno A, Yamamoto K, Sekine M (2014) Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil. J Environ Sci 26:1223–1231

    Article  CAS  Google Scholar 

  • Li T, Wright DA, Spalding MH, Yang B (2015) TALEN-based genome editing in yeast. In: Genetic transformation systems in fungi, vol 1. Springer, Switzerland, pp 289–307

    Chapter  Google Scholar 

  • Li Y, Fu K, Gao S, Wu Q, Fan L, Li Y, Chen J (2013) Increased virulence of transgenic Trichoderma koningii strains to the Asian corn borer larvae by over-expressing heterologous chit42 gene with chitin-binding domains. J Environ Sci Health, Part B 48:376–383

    Google Scholar 

  • Lien PJ, Ho HJ, Lee TH, Lai WL, Kao CM (2015) Effects of aquifer heterogeneity and geochemical variation on petroleum hydrocarbon biodegradation at a gasoline spill site. Adv Mater Res 1079:584–588

    Google Scholar 

  • Liers C, Pecyna MJ, Kellner H, Worrich A, Holger Z, Steffen KT, Hofrichter M, Ullrich R (2013) Substrate oxidation by dye decolorizing peroxidases (DyPs) from wood- and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases. Appl Microbiol Biotechnol 97:5839–5849

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Li X, Sun T, Li P, Zhou Q, Sun L, Hu X (2009) Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil. Bull Environ Contam Toxicol 83:542–547

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Hou Y, Sun G (2013) Synergistic degradation of pyrene and volatilization of arsenic by co-cultures of bacteria and a fungus. Front Environ Sci Eng 7:191–199

    Article  CAS  Google Scholar 

  • Llado S, Covino S, Solanas AM, Vinas M, Petruccioli M, Dannibale A (2013) Comparative assessment of bioremediation approaches to highly recalcitrant PAH degradation in a real industrial polluted soil. J Hazard Mater 248–249:407–414

    Article  PubMed  CAS  Google Scholar 

  • Marco E, Font X, Sanchez A, Gea T, Gabarrell X, Caminal G (2013) Co-composting as a management strategy to reuse the white–rot fungus Trametes versicolor after its use in a biotechnological process. Int J Environ Waste Manag 11:100–108

    Article  CAS  Google Scholar 

  • Margot J, Bennati-Granier C, Maillard J, Blanquez P, Barry DA, Holliger C (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marjadi D (2013) Toxicity assessment and microbial degradation of synthetic dyes. Int J Chemtech App 2:126–136

    Google Scholar 

  • Martins TM, Hartmann DO, Planchon S, Martins I, Renaut J, Pereira CS (2015) The old 3-oxoadipate pathway revisited: new insights in the catabolism of aromatics in the saprophytic fungus Aspergillus nidulans. Fungal Genet Biol 74:32–44

    Article  CAS  PubMed  Google Scholar 

  • Martins TM, Nunez O, Gallart-Ayala H, Leitao MC, Galceran MT, Pereira CS (2014) New branches in the degradation pathway of monochlorocatechols by Aspergillus nidulans: a metabolomics analysis. J Hazard Mater 268:264–272

    Article  CAS  PubMed  Google Scholar 

  • Maruthi YA, Hossain K, Thakre S (2013) Aspergillus flavus: a potential bioremediator for oil contaminated soils. Eur J Sustain Dev 2:57–66

    Google Scholar 

  • Mate D, Garcia-Ruiz E, Camarero S, Alcalde M (2011) Directed evolution of fungal laccases. Curr Genomics 12:113–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Malik A (2014) Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream. Bioresour Technol 171:217–226

    Article  CAS  PubMed  Google Scholar 

  • Mitra A, Roy D, Roy P, Bor AM, Sarkar Mitra AK (2014) Sustainability of Aspergillus spp. in metal enriched substrate aiming towards increasing bioremediation potential. World J Pharm Pharm Sci 3:864–878

    Google Scholar 

  • Morel M, Meux E, Mathieu Y, Thuillier A, Chibani K, Harvengi L, Jacquot J-P, Gelhaye E (2013) Xenomic networks variability and adaptation traits in wood decaying fungi. Microb Biotechnol 6:248–263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mougin C, Cheviron N, Pinheiro M, Lebrun JD, Boukcim H (2013) New insights into the use of filamentous fungi and their degradative enzymes as tools for assessing the ecotoxicity of contaminated soils during bioremediation processes. Fungi Bioremediators Soil Biol 32:419–432

    Article  CAS  Google Scholar 

  • Mumtaz S, Streten-Joyce C, Parry DL, Mc Guinness KA, Lu P, Gibb KS (2013) Fungi outcompete bacteria under increased uranium concentration in culture media. J Environ Radioact 120:39–44

    Article  CAS  PubMed  Google Scholar 

  • Naranjo-Briceno L, Perniam B, Guerra M, Demey HR, Sisto AD, Inojosa Y, González M, Fusella E, Freites M, Yegres F (2013) Potential role of oxidative exoenzymes of the extremophilic fungus Pestalotiopsis palmarum BM-04 in biotransformation of extraheavy crude oil. Microb Biotechnol 6:720–730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan K, Chopade N, Raj PV, Subrahmanyam VM, Rao JV (2013) Fungal chitinase production and its application in biowaste management. J Sci Ind Res 72:393–399

    CAS  Google Scholar 

  • Nayak V, Pai PV, Pai A, Pai S, Sushma YD, Rao CV (2013) A comparative study of caffeine degradation by four different fungi. Biorem J 17:79–85

    Article  CAS  Google Scholar 

  • Neifar M, Maktouf S, Ghorbel RE, Jaouani A, Cherif A (2015) Extremophiles as source of novel bioactive compounds with industrial potential. In: Gupta VK, Tuohy MG, O’Donovan A, Lohani M (eds) Biotechnology of bioactive compounds: sources and applications. Wiley, Hoboken, pp 245–268

    Google Scholar 

  • Ni SQ, Wang Z, Lv L, Liang X, Ren L, Zhou Q (2015) Bioremediation of wastewaters with decabromodiphenyl ether by anaerobic granular sludge. Colloids Surf B Biointerfaces 128:522–527

    Article  CAS  PubMed  Google Scholar 

  • Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomol Ther 3:597–611

    Google Scholar 

  • Nolvak H, Truu J, Limane B, Truu M, Cepurnieks G, Bartkevics V, Juhanson J, Muter O (2013) Microbial community changes in TNT spiked soil bioremediation trial using biostimulation, phytoremediation and bioaugmentation. J Environ Eng Landsc Manag 21:153–162

    Article  Google Scholar 

  • Ntougias S, Baldrian P, Ehaliotis C, Nerud F, Merhautova V, Zervakis GI (2015) Olive mill wastewater biodegradation potential of white-rot fungi–mode of action of fungal culture extracts and effects of ligninolytic enzymes. Bioresour Technol 189:121–130

    Article  CAS  PubMed  Google Scholar 

  • Pandit PD, Gulhane MK, Khardenavis AA, Vaidya AN (2015) Technological advances for treating municipal waste. In: Kalia VC (ed) Microbial factories, vol 1(4.1). Springer, USA

    Google Scholar 

  • Pardo I, Chanaga X, Vicente AI, Alcalde M, Camarero S (2013) New colorimetric screening assays for the directed evolution of fungal laccases to improve the conversion of plant biomass. BMC Bitechnol 13:90

    Article  CAS  Google Scholar 

  • Patel SKS, Kalia VC, Choi J-H, Haw J-R, Kim I-W, Lee JK (2014) Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability. J Microbiol Biotechnol 24:639–647

    Article  CAS  PubMed  Google Scholar 

  • Pinedo-Rilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214

    Article  Google Scholar 

  • Pita T, Alves-Pereira I, Ferreira R (2013) Decline in peroxidase and catalases by lindane may cause an increase in reactive oxygen species in Saccharomyces cerevisiae. In: Mendez-Vilas A (ed) Industrial, medical and environmental applications of microorganisms, current status and trends. Wageningen Academic Publishers, Netherlands

    Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  PubMed  Google Scholar 

  • Polak J, Jarosz-Wilkolazka A (2012) Fungal laccases as green catalysts for dye synthesis. Process Biochem 47:1295–1307

    Article  CAS  Google Scholar 

  • Prenafeta-Boldú FX, Summerbell R, Sybren de Hoog G (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol. Rev 30:109–130

    Google Scholar 

  • Prigione V, Zerlottin M, Refosco D, Tigini V, Anastasi A, Varese GC (2009) Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi. Bioresour Technol 100:2770–2776

    Article  CAS  PubMed  Google Scholar 

  • Purnomo AS, Mori T, Putra SR, Kondo R (2013) Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. Int Biodeterior Biodegradation 82:40–44

    Article  CAS  Google Scholar 

  • Qin G, Gong D, Fan MY (2013) Bioremediation of petroleum contaminated soil by biostimulation amended with biochar. Int Biodeterior Biodegradation 85:150–155

    Article  CAS  Google Scholar 

  • Rahman RA, Molla AH, Fakhrul-Razi A (2014) Assessment of sewage sludge bioremediation at different hydraulic retention times using mixed fungal inoculation by liquid-state bioconversion. Environ Sci Pollut Res 21:1178–1187

    Article  CAS  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer, Switzerland, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rana KL, Kour D, Yadav N, Yadav AN (2020) Endophytic microbes in nanotechnology: current development, and potential biotechnology applications. In: Kumar A, Singh VK (eds) Microbial endophytes. Woodhead Publishing, Cambridge, MA, pp 231–262. https://doi.org/10.1016/B978-0-12-818734-0.00010-3

    Chapter  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2019a) Genetic manipulation of secondary metabolites producers. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 13–29. https://doi.org/10.1016/B978-0-444-63504-4.00002-5

    Chapter  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N, Tataei Sarshari N (2019b) Bioengineering of secondary metabolites. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 55–68. https://doi.org/10.1016/B978-0-444-63504-4.00004-9

    Chapter  Google Scholar 

  • Reya I, Lakshmi Prabha M, Renitta E (2013) Equilibrium and kinetic studies on biosorption of Cr(VI) using novel Aspergillus jegita isolated from tannery effluent. Res J Chem Environ 17:72–78

    CAS  Google Scholar 

  • Rodrıguez-Rodrıguez CE, Castro-Gutierrez V, Chin-Pampillo JS, Ruiz-Hidalgo K (2013) On-farm biopurification systems: role of white-rot fungi in depuration of pesticide-containing wastewaters. FEMS Microbiol Lett 345:1–12

    Article  PubMed  CAS  Google Scholar 

  • Rosales E, Pazos M, Angeles Sanroman M (2013) Feasibility of solid-state fermentation using spent fungi-substrate in the biodegradation of PAHs. Clean Soil Air Water 41:610–615

    Article  CAS  Google Scholar 

  • Sagarkar S, Mukherjee S, Nousiainen A, Bjorklof K, Purohit HJ, Jørgensen KS, Kapley A (2013) Monitoring bioremediation of atrazine in soil microcosms using molecular tools. Environ Pollut 172:108–115

    Article  CAS  PubMed  Google Scholar 

  • Sakaki T, Yamamoto K, Ikushiro S (2013) Possibility of application of cytochrome P450 to bioremediation of dioxins. Biotechnol Appl Biochem 60:65–70

    Article  CAS  PubMed  Google Scholar 

  • Sari AA, Tachibana S, Muryanto Hadibarata T (2015) Development of bioreactor systems for decolorization of reactive green 19 using white-rot fungus. Desalin Water Treat. https://doi.org/10.1080/19443994.2015.1012121

  • Saxena J, Sharma MM, Gupta S, Singh A (2014) Emerging role of fungi in nanoparticle synthesis and their applications. World J Pharm Sci 3:1586–1613

    Google Scholar 

  • Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228A–231A

    Article  CAS  PubMed  Google Scholar 

  • Sharma KK (2015) Fungal genome sequencing: basic biology to biotechnology. Crit Rev Biotechnol. https://doi.org/10.3109/07388551.2015.1015959

  • Silambarasan S, Abraham J (2013) Ecofriendly method for bioremediation of chloropyrifos from agricultural soil by novel fungus Aspergillus terreus JAS1. Water Air Soil Pollut 224:1369

    Article  CAS  Google Scholar 

  • Singh A, Kumar R, Yadav AN, Mishra S, Sachan S, Sachan SG (2020a) Tiny microbes, big yields: microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 1–15. https://doi.org/10.1016/B978-0-12-820526-6.00001-4

    Chapter  Google Scholar 

  • Singh C, Tiwari S, Singh JS, Yadav AN (2020b) Microbes in agriculture and environmental development. CRC Press, Boca Raton

    Book  Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Singh MP, Vishwakarma SK, Srivastava AK (2013a) Bioremediation of direct blue 14 and extracellular ligninolytic enzyme production production by white-rot fungi: Pleurotus sp. Biomed Res Int. https://doi.org/10.1155/2013/180156

  • Singh P, Raghukumar C, Parvatkar RR, Mascarenhas-Pereira MBL (2013b) Heavy metal tolerance in the psychrotolerant Cryptococcus sp. isolated from deep-sea sediments of the central Indian Basin. Yeast 30:93–101

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Kathiresan K, Anandhan S (2015) A review on marine based nanoparticles and their potential applications. Afr J Biotechnol 14:1525–1532

    Article  Google Scholar 

  • Sinha A, Sinha R, Khare SK (2014) Heavy metal bioremediation and nanoparticle synthesis by metallophiles. In: Parmar N, Singh A (eds) Geomicrobiology and biogeochemistry, soil biology. Springer, Berlin, pp 101–118

    Chapter  Google Scholar 

  • Soobhany N, Mohee R, Garg VK (2015) Comparative assessment of heavy metals content during the composting and vermicomposting of municipal solid waste employing Eudrilus eugeniae. Waste Manag 39:130–145

    Article  CAS  PubMed  Google Scholar 

  • Sousa NR, Ramos MA, Marques APGC, Castro PML (2014) A genotype dependent-response to cadmium contamination in soil is displayed by Pinus pinaster in symbiosis with different mycorrhizal fungi. Appl Soil Ecol 76:7–13

    Article  Google Scholar 

  • Spina F, Tigini V, Prigione V, Varese GC (2015) Fungal biocatalysts in the textile industry: whole-cell systems in real textile wastewater treatment. In: Gupta VK, Mac RL, Sreenivasa Prasad S (eds) Fungal bio-molecules: sources. Wiley, Applications and Recent Developments, pp 39–50

    Chapter  Google Scholar 

  • Srivastava S (2015) Bioremediation technology: a greener and sustainable approach for restoration of environmental pollution. In: Kaushik G (ed) Applied environmental biotechnology: present scenario and future trends. Springer, India, pp 1–18. https://doi.org/10.1007/978-81-322-2123-4_1

    Chapter  Google Scholar 

  • Strittmatter E, Liers C, Ullrich R, Wachter S, Hofrichter M, Plattner DA, Piontek K (2013) First crystal structure of a fungal high-redox potential dye-decolorizing peroxidase substrate interaction sites and long- range electron transfer. J Biol Chem 288:4095–4102

    Article  CAS  PubMed  Google Scholar 

  • Syed K, Porollo A, Lam YW, Grimmet PE, Yadav JS (2013) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79:2692–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Mol Clin Environ Toxicol:133–164. Springer Basel

    Google Scholar 

  • Tegli S, Cerbonesch M, Corsi M, Bonnanni M, Bianchini R (2013) Water recycle as a must: decolorization of textile wastewaters by plant-associated fungi. J Basic Microbiol 54:120–132

    Article  PubMed  CAS  Google Scholar 

  • Testa A, Di Matteo A, Rao MA, Monti MM, Pedata PA, Van Der Lee TAJ (2012) A genomic approach for identification of fungal genes involved in pentachlorophenol degradation. Adv Res Sci Areas 9:1386–1389

    Google Scholar 

  • Thatoi H, Behera BC, Mishra RR (2013) Ecological role and biotechnological potential of mangrove fungi: a review. Mycology 4:54–71

    CAS  Google Scholar 

  • Thion C, Cebron A, Beguiristain T, Leyval C (2013) Inoculation of PAH-degrading strains of Fusarium solani and Arthrobacter oxydans in rhizospheric sand and soil microcosms: microbial interactions and PAH dissipation. Biodegradation 24:569–581

    Article  CAS  PubMed  Google Scholar 

  • Thippeswamy B, Shivakumar CK, Krishnappa M (2014) Studies on heavy metals detoxification biomarkers in fungal consortia. Caribb J Sci Technol 2:496–502

    Google Scholar 

  • Tigini V, Prigione V, Donelli I, Anastasi A, Freddi G, Giansanti P, Antonella M, Antonella GCV (2011) Cunninghamella elegans biomass optimisation for textile wastewater biosorption treatment: an analytical and ecotoxicological approach. App Microbiol Biot 90:343–352

    Article  CAS  Google Scholar 

  • Tigini V, Prigione V, Giansanti P, Mangiavillano A, Pannocchia A, Varese GC (2010) Fungal biosorption, an innovative treatment for the decolourisation and detoxification of textile effluents. Water 2:550–565

    Article  CAS  Google Scholar 

  • Torres-Salas P, Mate DM, Ghazi I, Plou FJ, Ballesteros AO, Alcalde M (2013) Widening the pH activity profile of a fungal laccase by directed evolution. Chembiochem 14:934–937

    Article  CAS  PubMed  Google Scholar 

  • Ulcnik A, Kralj Cigic I, Pohleven F (2013) Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases. World J Microbiol Biotechnol 29:2239–2247

    Article  CAS  PubMed  Google Scholar 

  • Urlacher VB, Girhard M (2012) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 30:26–36

    Article  CAS  PubMed  Google Scholar 

  • Vacondio B, Birolli WG, Ferreira IM, Seleghim MH, Gonçalves S, Vasconcellos SP, Porto AL (2015) Biodegradation of pentachlorophenol by marine-derived fungus Trichoderma harzianum CBMAI 1677 isolated from ascidian Didemnun ligulum. Biocatal Agric Biotechnol 4:266–275

    Article  Google Scholar 

  • Vanhulle S, Trovaslet M, Enaud E, Lucas M, Taghavi S, Van der Lelie D, Van Aken B, Foret M, Onderwater RC, Wesenberg D, Agathos SN, Schneider YJ, Corbisier AM (2008) Decolorization, cytotoxicity and genotoxicity reduction during a combined ozonation/fungal treatment of dye-contaminated wastewater. Environ Sci Technol 42:584–589

    Article  CAS  PubMed  Google Scholar 

  • Varese GC, Angelini P, Bencivenga M, Buzzini P, Donnini D, Gargano ML, Maggi O, Pecoraro L, Persiani AM, Savino E, Tigini V, Turchetti B, Vannacci G, Venturella G, Zambonelli A (2011) The current status of fungal biodiversity in Italy: ex situ conservation and exploitation of fungi in Italy. Plant Biosyst 145:997–1005

    Article  Google Scholar 

  • VazAraLijo A, Castoldi R, Maria G, Maciel FDI, Marques CG (2013) Ligninolytic enzymes from white-rot fungi and application in the removal of synthetic dyes. In: Polizeli TM, Rai M, De Lourdes M (eds) Fungal enzymes. CRC Press, Boca Raton, pp 258–279

    Google Scholar 

  • Verma AK, Raghukumar C, Parvatkar RR, Naik CG (2012) A rapid two-step bioremediation of the anthraquinone dye, reactive blue 4 by a marine-derived fungus. Water Air Soil Pollut 223:3499–3509

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, Microbial interactions and agro-ecological impacts, vol 2. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  • Vinichuk M, Martensson A, Ericsson T, Rosen K (2013) Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils. J Environ Radioact 115:151–156

    Article  CAS  PubMed  Google Scholar 

  • Vishwanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G (2014) Fungal laccases and their applications in bioremediation. Enzyme Res. https://doi.org/10.1155/2014/163242

  • Wang S, Yang Q, Bai Z, Wang S, Wang Y, Nowak KM (2015) Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge. Environ Technol 36:115–123

    Article  PubMed  CAS  Google Scholar 

  • Watharkar AD, Khandare RV, Waghmare PR, Jagadale AD, Govindwar SP, Jadhav JP (2015) Treatment of textile effluent in a developed phytoreactor with immobilized bacterial augmentation and subsequent toxicity studies on Etheostoma olmstedi fish. J Hazard Mater 283:698–704

    Article  CAS  PubMed  Google Scholar 

  • Wong KS, Cheung MK, Au CH, Kwan HS (2013) A novel Lentinula edodes laccase and its comparative enzymology suggest guaiacol-based laccase engineering for bioremediation. PLoS One 8:e66426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao P, Mori T, Kamei I, Kiyota H, Takagi K, Kondo R (2011) Novel metabolic pathways of organochlorine pesticides dieldrin and aldrin by the white-rot fungi of the genus Phlebia. Chemosphere 85:218–224

    Article  CAS  PubMed  Google Scholar 

  • Xie S, Sun S, Dai SY, Yuan JS (2013) Efficient coagulation of microalgae in cultures with filamentous fungi. Algal Res 2:28–33

    Article  Google Scholar 

  • Yadav AN (2020) Recent trends in mycological research, Agricultural and medical perspective, vol 1. Springer, Switzerland

    Google Scholar 

  • Yadav AN, Kour D, Kaur T, Devi R, Yadav N (2020a) Agriculturally important fungi for crop productivity: current research and future challenges. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important fungi for sustainable agriculture, Perspective for diversity and crop productivity, vol 1. Springer, Cham, pp 275–286. https://doi.org/10.1007/978-3-030-45971-0_12

    Chapter  Google Scholar 

  • Yadav AN, Kour D, Kaur T, Devi R, Yadav N (2020b) Functional annotation of agriculturally important fungi for crop protection: current research and future challenges. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important fungi for sustainable agriculture, Functional annotation for crop protection, vol 2. Springer, Cham, pp 347–356. https://doi.org/10.1007/978-3-030-48474-3_12

    Chapter  Google Scholar 

  • Yadav AN, Kour D, Rana KL, Yadav N, Singh B, Chauhan VS et al (2019a) Metabolic engineering to synthetic biology of secondary metabolites production. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 279–320. https://doi.org/10.1016/B978-0-444-63504-4.00020-7

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020c) Agriculturally important fungi for sustainable agriculture, Perspective for diversity and crop productivity, vol 1. Springer, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020d) Agriculturally important fungi for sustainable agriculture, Functional annotation for crop protection, vol 2. Springer, Cham

    Book  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020e) Microbiomes of extreme environments, Biodiversity and biotechnological applications, vol 1. CRC Press, Taylor & Francis, Boca Raton, USA

    Google Scholar 

  • Yadav AN, Singh J, Singh C, Yadav N (2020f) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019b) Recent advancement in white biotechnology through fungi, Perspective for sustainable environments, vol 3. Springer, Cham

    Book  Google Scholar 

  • Yang S, Hai FI, Nghiem LD, Nguyen LN, Roddick LD (2013a) Removal of bisphenol a and diclofenac by a novel fungal membrane bioreactor operated under non-sterile conditions. Int Biodeterior Biodegradation 85:483–490

    Article  CAS  Google Scholar 

  • Yang S, Hai FI, Nghiem LD, Price WE, Roddick F, Moreira MT, Magram SF (2013b) Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin-modifying enzymes: a critical review. Bioresour Technol 141:97–108

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Liang Y, Ghosh A, Song Y, Chen H, Tang M (2015) Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead–zinc mine area: potential applications for phytoremediation. Environ Sci Pollut Res Int 22:13179–13193

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Zeng G, Chen G, Yan M, Chen A, Du J et al (2015a) The effect of heavy metal-induced oxidative stress on the enzymes in white-rot fungus Phanerochaete chrysosporium. Appl Biochem Biotechnol 175:1281–1293

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Tang J, Sun J, Yu C, Liu Z, Chen J (2015b) Hex1- related transcriptome of Trichoderma atroviride reveals expression patterns of ABC transporters associated with tolerance to dichlorvos. Biotechnol Lett. https://doi.org/10.1007/s10529-015-1806-4

  • Zhang Y, Xie J, Liu M, Tian Z, He Z, van Nostrand JD, Ren L, Zhou J, Yang M (2013) Microbial community functional structure in response to antibiotics in pharmaceutical wastewater treatment systems. Water Res 47:6298–6308

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Kumari, R., Yadav, A.N. (2021). Fungal Secondary Metabolites for Bioremediation of Hazardous Heavy Metals. In: Yadav, A.N. (eds) Recent Trends in Mycological Research. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-68260-6_4

Download citation

Publish with us

Policies and ethics