Skip to main content

Digital Transformation of Interdisciplinary Engineering Education

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1328))

Abstract

Global transformation processes and sustainability issues will continue to yield a rapid increase in problems at the boundary between technical and non-technical disciplines in higher education. Furthermore, new fields of work emerge due to the digital transformation. Graduates need to be prepared to identify and describe problems and to develop appropriate solutions in teams in order to contribute to change processes related to the future in a smart world. Engineering sciences have to take up the challenge to provide suitable educational programs for a broader target group, i.e. non-technical students, especially in light of the current shortage of qualified specialists. This paper contributes twofold to that discourse; (1) by a novel theory-based teaching and learning concept for an engineering course for bachelor students of non-engineering disciplines (e.g. sustainability sciences) and associated empirical findings of implementation, and (2) by innovative project-based laboratory experiments that encourage interdisciplinary approaches. As a specific contribution to the innovative practice of engineering education, part (1) outlines the student-centered lecture scheme “Electrical and Automation Engineering” (four semester hours per week). The framework-based development, the objectives and the didactic design of the bachelor course as well as the engineering key topics in the context of smart technologies and sustainability are presented. Part (2) details novel practices in the area of engineering education by presenting two specially designed lab experimentation platforms. Starting from the theory framework, the paper contributes to a theoretical understanding and educational practice of engineering courses designed for a specific group of students at the crossroads of engineering and other disciplines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Harteis, C.: The impact digitalization in the workplace: an educational view. Springer, Berlin Heidelberg, New York, NY (2018)

    Google Scholar 

  2. Rauhut, I.: VDI-Studie Ingenieurausbildung für die Digitale Transformation [Engineering education for digital transformation]. https://www.vdi.de/ueber-uns/presse/publikationen/details/vdi-studie-ingenieurausbildung-fuer-die-digitale-transformation March 2019

  3. Auer, M.E., Kim, K.S. (eds.): Engineering Education for a Smart Society: World Engineering Education Forum & Global Engineering Deans Council 2016, Advances in Intelligent Systems and Computing, vol. 627. Springer International Publishing, Cham (2018)

    Google Scholar 

  4. Bauer, W.: Weiterbildung und Kompetenzentwicklung für die Industrie 4.0 [continuing education and competence development for Industry 4.0]. In: Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M. (eds.) Handbuch Industrie 4.0 Bd.1: Produktion [Handbook Industry 4.0, vol. 1: Production]. Springer, Berlin (2017)

    Google Scholar 

  5. Barth, M.: Implementing Sustainability in Higher Education: Learning in an age of Transformation. Routledge studies in sustainable development, Routledge, London, New York (2015)

    Google Scholar 

  6. Uskov, V.L., Howlett, R.J., Jain, L.C.: Smart Education and e-Learning 2017. Springer International Publishing Imprint, Springer, Cham (2018)

    Book  Google Scholar 

  7. Niebert, K., Gropengiesser, H.: The model of educational reconstruction: a framework for the design of theory-based content specific interventions. the example of climate change. In: Plomp, T., Nieveen, N. (eds.) Educational design research – Part B: Illustrative cases, pp. 511–531. SLO, Enschede, the Netherlands (2013)

    Google Scholar 

  8. Duit, R., Gropengiesser, H., Kattmann, U., Komorek, M., Parchmann, I.: The model of educational reconstruction - a framework for improving teaching and learning science. In: Jorde, D., Dillon, J. (eds.) Science Education Research and Practice in Europe, pp. 13–37. SensePublishers, Rotterdam (2012)

    Chapter  Google Scholar 

  9. Block, B.M.: Educational reconstruction as model for the theory-based design of student-centered learning environments in electrical engineering courses. In: 2016 IEEE Global Engineering Education Conference (EDUCON), pp. 105–113 (April 2016)

    Google Scholar 

  10. Kattmann, U., Duit, R., Gropengiesser, H., Komorek, M.: Das Modell der Didaktischen Rekonstruktion - ein Rahmen für naturwissenschaftsdidaktische Forschung [The model of educational reconstruction - a framework for educational research and development within natural sciences]. Zeitschrift für Didaktik der Naturwissenschaften 3, 3–18 (1997)

    Google Scholar 

  11. Krapp, A., Weidenmann, B.: Pädagogische Psychologie [Educational psychology]. Beltz, Weinheim (2006)

    Google Scholar 

  12. Block, B.M., Haus, B., Steenken, A., von Geyso, T.: Interdisciplinary engineering education in the context of digitalization and global transformation processes. In: Proceedings of the 48th SEFI Annual Conference (2020), to appear

    Google Scholar 

  13. Weissgerber, W.: Elektrotechnik für Ingenieure [Electrical engineering for engineers]. Springer Fachmedien Wiesbaden, Wiesbaden (2015)

    Google Scholar 

  14. Albach, M.: Elektrotechnik [Electrical Engineering]. Pearson, München (2014)

    Google Scholar 

  15. Lunze, J.: Regelungstechnik [Control Engineering]. Springer, Berlin Heidelberg, Berlin, Heidelberg (2010)

    Google Scholar 

  16. Hagl, R.: Elektrische Antriebstechnik [Electrical Powertrain Technology]. Hanser-Verlag, München (2015)

    Book  Google Scholar 

  17. Kruse, D., Frerich, S., Petermann, M., Ortelt, T.R., Tekkaya, A.E.: Remote labs in ELLI: lab experience for every student with two different approaches. In: 2016 IEEE Global Engineering Education Conference (EDUCON), pp. 469–475. IEEE, Abu Dhabi, United Arab Emirates April 2016

    Google Scholar 

  18. Bauernhansl, T., ten Hompel, M., Vogel-Heuser, B. (eds.): Industrie 4.0 in Produktion, Automatisierung und Logistik [Industry 4.0 in production, automation and logistics]. Springer Fachmedien Wiesbaden, Wiesbaden (2014)

    Google Scholar 

  19. Deci, E., Ryan, R.: Theory of self-determination and motivation and its importance for pedagogy. Pedagogy 39(2), 223–239 (1993)

    Google Scholar 

  20. Mandl, H., Reinmann-Rothmeier, G.: Die konstruktivistische Auffassung vom Lehren und Lernen [The constructivist approach to teaching and learning]. In: Schneider, W., Knopf, M. (eds.) Entwicklung, Lehren und Lernen. Zum Gedenken an Franz Emanuel Weinert [Development, Teaching and Learning. In memory of Franz Emanuel Weinert], pp. 366–403. Hogrefe, Göttingen (2003)

    Google Scholar 

  21. Mills, J., Ayre, M., Gill, J.: Gender Inclusive Engineering Education. Routledge research in education, Routledge, New York (2010)

    Google Scholar 

  22. Gill, J., Sharp, R., Mills, J., Franzway, S.: I still wanna be an engineer! women, education and the engineering profession. Euro. J. Eng. Educ. 33(4), 391–402 (2008)

    Article  Google Scholar 

  23. Wächter, C.: Interdisciplinary teaching and learning for diverse and sustainable engineering education. In: Beraud, A., Godfroy, A.S., Michel, J. (eds.) GIEE 2011: Gender and Interdisciplinary Education for Engineers, pp. 47–63. SensePublishers, Rotterdam (2012)

    Chapter  Google Scholar 

  24. Block, B.M., Haus, B.: New ways in engineering education for a sustainable and smart future. In: Proceedings of the 50th Annual Frontiers in Education (FIE) Conference (2020), to appear

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brit-Maren Block .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Block, BM., Haus, B., Steenken, A., von Geyso, T. (2021). Digital Transformation of Interdisciplinary Engineering Education. In: Auer, M.E., Rüütmann, T. (eds) Educating Engineers for Future Industrial Revolutions. ICL 2020. Advances in Intelligent Systems and Computing, vol 1328. Springer, Cham. https://doi.org/10.1007/978-3-030-68198-2_26

Download citation

Publish with us

Policies and ethics