Skip to main content

Embedded System for Fall Detection in Activities of Daily Living ADLs: A Time Window Analysis

  • Conference paper
  • First Online:
Artificial Intelligence, Computer and Software Engineering Advances (CIT 2020)

Abstract

According to the world health organization (WHO), the falls are the second cause of death worldwide related with unintentional injuries, affecting mainly adults over 65 years old. In this article, a portable embedded system is developed through the use of a 32-bit microcontroller and an inertial sensor, that is used for three activities of daily living (ADLs) detection: falls, walking and stationary state. In embedded systems the amount of data to be processed (time window) affects directly the response time and define the features of the hardware to be selected and used. Within a different time windows, the accelerometer signals \(a_{x} ,a_{y} ,a_{z}\) are acquired in order to calculate the acceleration module over the time. By the use of descriptive statistics, this module will provide features as: mean, median, variance, 25th percentile and asymmetry in order to be used in the Naive Bayes classifier, which was selected based on a previous work. The system has wireless communication to send information from the detected ADLs to the PC for test purposes. The device was carried by 6 people on the waist, who carried out the tests of the different ADLs. System accuracy is between 60% and 82% with processing times between 0.5–1.35 ms depending of the time window size. For the offline training of the Naïve Bayes algorithm, the Data Set of the Institute of Communications and Navigations is used, corresponding to samples of 16 male and female subjects between 23 and 50 years old.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salud de la, O. M.: “Caídas” (2018)

    Google Scholar 

  2. González, R., et al: Desarrollo de un sistema de detección de caídas basado en acelerómetros (2015)

    Google Scholar 

  3. Solórzano, S., Pozo, D., Morales, L., Villalonga, C.: Análisis comparativo de algoritmos de aprendizaje supervisado para la detección de caídas (2018)

    Google Scholar 

  4. María, J., Plaza, C., Agüero, C.E., González, T.: CHAPTER X Detección visual de caídas para ambientes inteligentes

    Google Scholar 

  5. Persona-Ordenador, I.: Interacción 2018 XIX Congreso Internacional de (2018)

    Google Scholar 

  6. SENSE4CARE: The best fall detector in the market. Reliable, easy to use and economical

    Google Scholar 

  7. Vigi’Fall: Detector de caída a distancia - Vigi’Fall TM - Vigilio Telemedical

    Google Scholar 

  8. Barreras, V.S.: El detector de caídas ‘Vigi’fall

    Google Scholar 

  9. Asistencias, T.: Detector de caídas

    Google Scholar 

  10. Russo, C., et al.: Tratamiento masivo de datos utilizando técnicas de Machine Learning. In: XVIII Workshop de Investigadores en Ciencias de la Computación (Entre Ríos, Argentina) (2016)

    Google Scholar 

  11. Perspective, A.A.: Machine Learning & Pattern Recognition Series. Chapman & Hall/CRC, Boca Raton (2015)

    Google Scholar 

  12. Casas Roma, J., Bosch Rué, A., Lozano Bagén, T.: Deep learning : principios y fundamentos. UOC (2019)

    Google Scholar 

  13. Settles, B.: Computer sciences department active learning literature survey (2009)

    Google Scholar 

  14. Chen, S., Webb, G.I., Liu, L., Ma, X.: A novel selective naïve Bayes algorithm. Knowl. Syst. 192, 105361 (2020)

    Article  Google Scholar 

  15. Rish, I.: An empirical study of the naive Bayes classifier. (2020)

    Google Scholar 

  16. Ting, S.L., Ip, W.H., Tsang, A.H.C.: Is naïve Bayes a good classifier for document classification? (2011)

    Google Scholar 

  17. “DLR - Institute of Communications and Navigation - Data Set.”

    Google Scholar 

  18. Morales, L., Pozo, D.: An experimental comparative analysis among different classifiers applied to identify hand movements based on sEMG. In: 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), pp. 1–6 (2017)

    Google Scholar 

Download references

Acknowledgment

The authors thanks to the staff Unidad de Innovación Tecnológica (UITEC) of Universidad de Las Américas for their infrastructure, equipment and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pozo-Espín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bustos, S., Flores, M.J., Pozo-Espín, D., Solórzano, S. (2021). Embedded System for Fall Detection in Activities of Daily Living ADLs: A Time Window Analysis. In: Botto-Tobar, M., Cruz, H., Díaz Cadena, A. (eds) Artificial Intelligence, Computer and Software Engineering Advances. CIT 2020. Advances in Intelligent Systems and Computing, vol 1326. Springer, Cham. https://doi.org/10.1007/978-3-030-68080-0_17

Download citation

Publish with us

Policies and ethics