Skip to main content

Recycling the Plastic Wastes to Carbon Nanotubes

  • Chapter
  • First Online:
Waste Recycling Technologies for Nanomaterials Manufacturing

Abstract

This chapter introduces the reader to utilizing plastic wastes as a precursor for the fabrication of carbon nanotubes and the efforts done for this purpose. In addition, it provides a brief introduction to the topic, and an overview of the fundamental concepts of carbon nanotubes, including structure, types, and growth mechanism, is given. The conventional methods of fabricating carbon nanotubes are discussed. Moreover, it describes the methods used to convert plastic waste to carbon nanotubes in detail, while also highlighting the factors affecting each process’s efficiency and the recent progress in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAO:

Anodic aluminum oxide

BCNTs:

Bamboo carbon nanotubes

BR:

Polybutadiene rubber

CCVD:

Ceramic boat in a horizontal quartz tube

CNTs:

Carbon nanotubes

CO:

Carbon monoxide

CO CVD:

Carbon monoxide CVD

CoAc:

Cobalt acetate

CVD:

Chemical vapor deposition

HDPE:

High-density polyethylene

HiPCO:

High-pressure catalytic decomposition of carbon Monoxide

LDPE:

Low-density polyethylene

MA-PP:

Maleated polypropylene

MWNT:

Multiwalled nanotube

NR:

Natural rubber

OMMT:

Modified montmorillonite

PE:

Polyethylene

PECVD:

Plasma-enhanced CVD

PET:

Polyethylene terephthalate

PF:

Phenolic formaldehyde resin

PP:

Polypropylene

PS:

Polystyrene

PVC:

Polyvinyl chloride

SBR:

Styrene-butadiene rubber

SWNT:

Single-walled nanotube

VLS:

Vapor–liquid-solid

References

  1. Tessnow-von Wysocki I, Le Billon P (2019) Plastics at sea: treaty design for a global solution to marine plastic pollution. Environ Sci Policy 100:94–104

    Article  Google Scholar 

  2. Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: a state of art review and future applications. Compos B Eng 115:409–422

    Article  CAS  Google Scholar 

  3. Pol VG, Thiyagarajan P (2010) Remediating plastic waste into carbon nanotubes. J. Environ Monit 12(2):455–459

    Article  CAS  Google Scholar 

  4. Okolie JA, Nanda S, Dalai AK, Berruti F, Kozinski JA (2020) A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renew Sustain Energy Rev 119:109546

    Article  CAS  Google Scholar 

  5. Williams PT (2006) Yield and composition of gases and oils/waxes from the feedstock recycling of waste plastic. In: Feedstock recycling and pyrolysis of waste plastics. John Wiley & Sons, Ltd., pp 285–313

    Google Scholar 

  6. Bazargan A, McKay G (2012) A review—synthesis of carbon nanotubes from plastic wastes. Chem Eng J 195–196:377–391

    Article  CAS  Google Scholar 

  7. Czepirski L, Szczurowski J, Ba, ys M, aw, Makomaski G, Zieli, ski J, Ciesi, ska W, awa (2016) Novel carbonaceous nanomaterials from waste polymers. Curr Nanomaterials 1(2):103–109

    Google Scholar 

  8. Mukherjee A, Debnath B, Ghosh SK (2018) Carbon nanotubes as a resourceful product derived from waste plastic—a review. In: Waste management and resource efficiency. Springer, Singapore, pp 915–934

    Google Scholar 

  9. Kukovitskii EF, Chernozatonskii LA, L’Vov SG, Mel’nik NN (1997) Carbon nanotubes of polyethylene. Chem Phys Lett 266(3–4):323–328

    Article  CAS  Google Scholar 

  10. Kiselev NA, Sloan J, Zakharov DN, Kukovitskii EF, Hutchison JL, Hammer J, Kotosonov AS (1998) Carbon nanotubes from polyethylene precursors: structure and structural changes caused by thermal and chemical treatment revealed by HREM. Carbon 36(7–8):1149–1157

    Article  CAS  Google Scholar 

  11. Purohit R, Purohit K, Rana S, Rana RS, Patel V (2014) Carbon nanotubes and their growth methods. Proc Mater Sci 6:716–728

    Article  CAS  Google Scholar 

  12. Baughman RH (2002) Carbon nanotubes–the route toward applications. Science 297(5582):787–792

    Article  CAS  Google Scholar 

  13. Zhuo C, Levendis YA (2013) Upcycling waste plastics into carbon nanomaterials: a review. J Appl Polym Sci 131(4):39931

    Google Scholar 

  14. Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21(40):15872

    Article  CAS  Google Scholar 

  15. Ren Z, Lan Y, Wang Y (2012) Aligned carbon nanotubes: physics, concepts, fabrication and devices. Springer Science & Business Media, pp. 1–299

    Google Scholar 

  16. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  17. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    Article  CAS  Google Scholar 

  18. Sadegh H, Ali GAM, Abbasi Z, Nadagoud MN (2017) Adsorption of ammonium ions onto multi-walled carbon nanotubes. Stud Univ Babes-Bolyai Chem 62(2):233–245

    CAS  Google Scholar 

  19. Seyed Arabi SM, Lalehloo RS, Olyai MRTB, Ali GAM, Sadegh H (2019) Removal of congo red azo dye from aqueous solution by ZnO nanoparticles loaded on multiwall carbon nanotubes. Physica E 106:150–155

    Article  CAS  Google Scholar 

  20. Ali GAM, Sadegh H, Yusoff MM, Chong KF (2019) Highly stable symmetric supercapacitor from cysteamine functionalized multi-walled carbon nanotubes operating in a wide potential window. Mater Today Proc 16:2273–2279

    Article  CAS  Google Scholar 

  21. Nessim GD (2010) Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2(8):1306

    Article  CAS  Google Scholar 

  22. Ali GAM, Lih Teo EY, Aboelazm EAA, Sadegh H, Memar AOH, Shahryari-Ghoshekandi R, Chong KF (2017) Capacitive performance of cysteamine functionalized carbon nanotubes. Mater Chem Phys 197:100–104

    Article  CAS  Google Scholar 

  23. Maazinejad B, Mohammadnia O, Ali GAM, Makhlouf ASH, Nadagouda MN, Sillanpää M, Asiri AM, Agarwal S, Gupta VK, Sadegh H (2020) Taguchi L9 (34) orthogonal array study based on methylene blue removal by single-walled carbon nanotubes-amine: adsorption optimization using the experimental design method, kinetics, equilibrium and thermodynamics. J Mol Liq 298:112001

    Article  CAS  Google Scholar 

  24. Kumar M (2011) Carbon nanotube synthesis and growth mechanism. In: Yellampalli, S (eds.) Carbon nanotubes—synthesis, characterization, applications. IntechOpen, pp. 127–193

    Google Scholar 

  25. Saleh MH, Koller M (2019) Introductory chapter: carbon nanotubes. In: Saleh HE, El-Sheikh SMM (eds.) Perspective of carbon nanotubes. IntechOpen, pp. 3–9

    Google Scholar 

  26. Sadegh H, Ali GAM, Makhlouf ASH, Chong KF, Alharbi NS, Agarwal S, Gupta VK (2018) MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. J Mol Liq 258:345–353

    Article  CAS  Google Scholar 

  27. Sharifi A, Montazerghaem L, Naeimi A, Abhari AR, Vafaee M, Ali GAM, Sadegh H (2019) Investigation of photocatalytic behavior of modified ZnS:Mn/MWCNTs nanocomposite for organic pollutants effective photodegradation. J Environ Manage 247:624–632

    Article  CAS  Google Scholar 

  28. Sadegh H, Ali GAM, Agarwal S, Gupta VK (2019) Surface modification of MWCNTs with carboxylic-to-amine and their superb adsorption performance. Int J Environ Res 13(3):523–531

    Article  CAS  Google Scholar 

  29. Saifuddin N, Raziah AZ, Junizah AR (2013) Carbon nanotubes: a review on structure and their interaction with proteins. J Chem 2013:1–18

    Article  CAS  Google Scholar 

  30. Lu J, Miao J (2012) Growth mechanism of carbon nanotubes: a nano Czochralski model. Nanoscale Res Lett 7(1):356

    Google Scholar 

  31. Pirard SL, Douven S, Pirard J-P (2017) Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapor deposition process. Front Chem Sci Eng 11(2):280–289

    Article  CAS  Google Scholar 

  32. Brinson BE, Gangoli VS, Kumar A, Hauge RH, Adams WW, Barron AR (2019) From newspaper substrate to nanotubes—analysis of carbonized soot grown on Kaolin sized newsprint. C. J Carbon Res 5(4):66

    Google Scholar 

  33. Venkataraman A, Amadi EV, Chen Y, Papadopoulos C (2019) Carbon nanotube assembly and integration for applications. Nanoscale Res Lett 14(1):220

    Google Scholar 

  34. Mirabootalebi SO, Akbari GH (2017) Methods for synthesis of carbon nanotubes—review. Int J Bio-Inorg Hybr Nanomater 6(2):49–57

    Google Scholar 

  35. Zhuo C, Hall B, Richter H, Levendis Y (2010) Synthesis of carbon nanotubes by sequential pyrolysis and combustion of polyethylene. Carbon 48(14):4024–4034

    Article  CAS  Google Scholar 

  36. Chen S, Liu Z, Jiang S, Hou H (2020) Carbonization: a feasible route for reutilization of plastic wastes. Sci Total Environ 710:136250

    Article  CAS  Google Scholar 

  37. Ahamed A, Veksha A, Yin K, Weerachanchai P, Giannis A, Lisak G (2020) Environmental impact assessment of converting flexible packaging plastic waste to pyrolysis oil and multi-walled carbon nanotubes. J Hazard Mater 390:121449

    Article  CAS  Google Scholar 

  38. Sharma SS, Batra VS (2019) Production of hydrogen and carbon nanotubes via catalytic thermo-chemical conversion of plastic waste: review. J Chem Technol Biotechnol 95(1):11–19

    Article  CAS  Google Scholar 

  39. Zahid MU, Pervaiz E, Hussain A, Shahzad MI, Niazi MBK (2018) Synthesis of carbon nanomaterials from different pyrolysis techniques: a review. Mater Res Express 5(5):052002

    Article  CAS  Google Scholar 

  40. Gong J, Liu J, Wan D, Chen X, Wen X, Mijowska E, Jiang Z, Wang Y, Tang T (2012) Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism. Appl Catal A 449:112–120

    Article  CAS  Google Scholar 

  41. Gong J, Chen X, Tang T (2019) Recent progress in controlled carbonization of (waste) polymers. Prog Polym Sci 94:1–32

    Article  CAS  Google Scholar 

  42. Mishra N, Das G, Ansaldo A, Genovese A, Malerba M, Povia M, Ricci D, Di Fabrizio E, Di Zitti E, Sharon M, Sharon M (2012) Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. J Anal Appl Pyrol 94:91–98

    Article  CAS  Google Scholar 

  43. Tang T, Chen X, Meng X, Chen H, Ding Y (2005) Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. Angew Chem Int Ed 44(10):1517–1520

    Article  CAS  Google Scholar 

  44. Kong Q, Zhang J (2007) Synthesis of straight and helical carbon nanotubes from catalytic pyrolysis of polyethylene. Polym Degrad Stab 92(11):2005–2010

    Article  CAS  Google Scholar 

  45. Zheng Y, Zhang H, Ge S, Song J, Wang J, Zhang S (2018) Synthesis of carbon nanotube arrays with high aspect ratio via ni-catalyzed pyrolysis of waste polyethylene. Nanomaterials 8(7):556

    Article  CAS  Google Scholar 

  46. Arena U, Mastellone ML, Camino G, Boccaleri E (2006) An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins. Polym Degrad Stab 91(4):763–768

    Article  CAS  Google Scholar 

  47. Aboul-Enein AA, Awadallah AE (2019) Impact of Co/Mo ratio on the activity of CoMo/MgO catalyst for production of high-quality multi-walled carbon nanotubes from polyethylene waste. Mater Chem Phys 238:121879

    Article  CAS  Google Scholar 

  48. Joseph Berkmans A, Jagannatham M, Priyanka S, Haridoss P (2014) Synthesis of branched, nano channeled, ultrafine and nano carbon tubes from PET wastes using the arc discharge method. Waste Manage 34(11):2139–2145

    Article  CAS  Google Scholar 

  49. El Essawy NA, Konsowa AH, Elnouby M, Farag HA (2016) A novel one-step synthesis for carbon-based nanomaterials from polyethylene terephthalate (PET) bottles waste. J Air Waste Manag Assoc 67(3):358–370

    Article  CAS  Google Scholar 

  50. Nath DCD, Sahajwalla V (2011) Application of fly ash as a catalyst for synthesis of carbon nanotube ribbons. J Hazard Mater 192(2):691–697

    Article  CAS  Google Scholar 

  51. Nath DCD, Sahajwalla V (2012) Analysis of carbon nanotubes produced by pyrolysis of composite film of poly (vinyl alcohol) and modified fly ash. Mater Sci Appl 03(02):103–109

    CAS  Google Scholar 

  52. Zhang Y, Wu C, Nahil MA, Williams P (2015) Pyrolysis-catalytic reforming/gasification of waste tires for production of carbon nanotubes and hydrogen. Energy Fuels 29(5):3328–3334

    Article  CAS  Google Scholar 

  53. Alves JO, Soares Tenório JA, Zhuo C, Levendis YA (2012) Use of Stainless Steel AISI 304 for catalytic synthesis of carbon nanomaterials from solid wastes. J Mater Res Technol 1(3):128–133

    Article  CAS  Google Scholar 

  54. Kwon S-J, Seo H-K, Ahn S, Lee T-W (2018) Value-added recycling of inexpensive carbon sources to graphene and carbon nanotubes. Adv Sustain Syst 3(1):1800016

    Article  CAS  Google Scholar 

  55. Mastellone ML, Perugini F, Ponte M, Arena U (2002) Fluidized bed pyrolysis of a recycled polyethylene. Polym Degrad Stab 76(3):479–487

    Article  CAS  Google Scholar 

  56. Yang W, Sun WJ, Chu W, Jiang CF, Wen J (2012) Synthesis of carbon nanotubes using scrap tyre rubber as carbon source. Chin Chem Lett 23(3):363–366

    Article  CAS  Google Scholar 

  57. Acomb JC, Wu C, Williams PT (2016) The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks. Appl Catal B 180:497–510

    Article  CAS  Google Scholar 

  58. Arnaiz N, Martin-Gullon I, Font R, Gomez-Rico MF (2018) Production of bamboo-type carbon nanotubes doped with nitrogen from polyamide pyrolysis gas. J Anal Appl Pyrol 130:52–61

    Article  CAS  Google Scholar 

  59. Borsodi N, Szentes A, Miskolczi N, Wu C, Liu X (2016) Carbon nanotubes synthetized from gaseous products of waste polymer pyrolysis and their application. J Anal Appl Pyrol 120:304–313

    Article  CAS  Google Scholar 

  60. Zhuo C, Hall B, Levendis Y, Richter H (2011) A novel technology for Green(er) Manufacturing of CNTs via recycling of waste plastics. In: MRS Proceedings 1317

    Google Scholar 

  61. Zhuo C, Alves JO, Tenorio JAS, Levendis YA (2012) Synthesis of carbon nanomaterials through up-cycling agricultural and municipal solid wastes. Ind Eng Chem Res 51(7):2922–2930

    Article  CAS  Google Scholar 

  62. Acomb JC, Wu C, Williams PT (2014) Control of steam input to the pyrolysis-gasification of waste plastics for improved production of hydrogen or carbon nanotubes. Appl Catal B 147:571–584

    Article  CAS  Google Scholar 

  63. Wu C, Nahil MA, Miskolczi N, Huang J, Williams PT (2016) Production and application of carbon nanotubes, as a co-product of hydrogen from the pyrolysis-catalytic reforming of waste plastic. Process Saf Environ Prot 103:107–114

    Article  CAS  Google Scholar 

  64. Nahil MA, Wu C, Williams PT (2015) Influence of metal addition to Ni-based catalysts for the co-production of carbon nanotubes and hydrogen from the thermal processing of waste polypropylene. Fuel Process Technol 130:46–53

    Article  CAS  Google Scholar 

  65. Zhang Y, Williams PT (2016) Carbon nanotubes and hydrogen production from the pyrolysis catalysis or catalytic-steam reforming of waste tyres. J Anal Appl Pyrol 122:490–501

    Article  CAS  Google Scholar 

  66. Lopez G, Artetxe M, Amutio M, Alvarez J, Bilbao J, Olazar M (2018) Recent advances in the gasification of waste plastics. A critical overview. Renew Sustain Energy Rev 82:576–596

    Article  CAS  Google Scholar 

  67. Liu X, Shen B, Yuan P, Patel D, Wu C (2017) Production of carbon nanotubes (CNTs) from thermochemical conversion of waste plastics using Ni/anodic aluminum oxide (AAO) template catalyst. Energy Proc 142:525–530

    Article  CAS  Google Scholar 

  68. Veksha A, Yin K, Moo JGS, Oh W-D, Ahamed A, Chen WQ, Weerachanchai P, Giannis A, Lisak G (2020) Processing of flexible plastic packaging waste into pyrolysis oil and multi-walled carbon nanotubes for electrocatalytic oxygen reduction. J Hazard Mater 387:121256

    Article  CAS  Google Scholar 

  69. Zhang Y, Wu C, Nahil MA, Williams P (2016) High-value resource recovery products from waste tyres. Proc Inst Civil Eng Waste Resource Manage 169(3):137–145

    Google Scholar 

  70. Gou X, Zhao D, Wu C (2020) Catalytic conversion of hard plastics to valuable carbon nanotubes. J Anal Appl Pyrol 145:104748

    Article  CAS  Google Scholar 

  71. Zhang Y, Nahil MA, Wu C, Williams PT (2017) Pyrolysis–catalysis of waste plastic using a nickel–stainless-steel mesh catalyst for high-value carbon products. Environ Technol 38(22):2889–2897

    Article  CAS  Google Scholar 

  72. Panahi A, Wei Z, Song G, Levendis YA (2019) Influence of Stainless-Steel catalyst substrate type and pretreatment on growing carbon nanotubes from waste postconsumer plastics. Ind Eng Chem Res 58(8):3009–3023

    Article  CAS  Google Scholar 

  73. Tripathi P, Durbach S, Coville N (2017) Synthesis of multi-walled carbon nanotubes from plastic waste using a stainless-Steel CVD reactor as catalyst. Nanomaterials 7(10):284

    Google Scholar 

  74. Adrados A, de Marco I, Caballero BM, López A, Laresgoiti MF, Torres A (2012) Pyrolysis of plastic packaging waste: a comparison of plastic residuals from material recovery facilities with simulated plastic waste. Waste Manage 32(5):826–832

    Article  CAS  Google Scholar 

  75. Acomb JC, Wu C, Williams PT (2015) Effect of growth temperature and feedstock: catalyst ratio on the production of carbon nanotubes and hydrogen from the pyrolysis of waste plastics. J Anal Appl Pyrol 113:231–238

    Article  CAS  Google Scholar 

  76. Zhang B, Song C, Liu C, Min J, Azadmanjiri J, Ni Y, Niu R, Gong J, Zhao Q, Tang T (2019) Molten salts promoting the “controlled carbonization” of waste polyesters into hierarchically porous carbon for high-performance solar steam evaporation. J Mater Chem A 7(40):22912–22923

    Article  CAS  Google Scholar 

  77. Moo JGS, Veksha A, Oh W-D, Giannis A, Udayanga WDC, Lin S-X, Ge L, Lisak G (2019) Plastic derived carbon nanotubes for electrocatalytic oxygen reduction reaction: effects of plastic feedstock and synthesis temperature. Electrochem Commun 101:11–18

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atika Alhanish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alhanish, A., Ali, G.A.M. (2021). Recycling the Plastic Wastes to Carbon Nanotubes. In: Makhlouf, A.S.H., Ali, G.A.M. (eds) Waste Recycling Technologies for Nanomaterials Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-68031-2_24

Download citation

Publish with us

Policies and ethics