Skip to main content

SI and CI Engine Control Architectures

  • Chapter
  • First Online:
Nonlinear Model Predictive Control of Combustion Engines

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

In this chapter, the engine control structure for spark ignition (SI) and compression ignition (CI) engines is examined. First, a general overview of engine control is given. A suitable architecture is presented which can be used to handle the demanding requirements on process control. By the use of hierarchization and modularization, the complex interaction of the various components can be tackled. For both the SI and the CI engine, a typical hardware setup is presented. Based on the two examples, the main control loops are introduced for both combustion concepts. The goals of the control tasks are outlined and exemplary sensitivities of the controlled values on the actuated values are shown. Specifically, the tasks within the air path, the ignition path, the combustion path, and the aftertreatment path are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Arcoumanis, C. Bae, R. Crookes, E. Kinoshita, The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: a review. Fuel 87(7), 1014–1030 (2008)

    Article  Google Scholar 

  2. J. Asprion, O. Chinellato, L. Guzzella, Optimal control of diesel engines: numerical methods, applications, and experimental validation. Mathematical Problems in Engineering (2014)

    Google Scholar 

  3. P. Bares, D. Selmanaj, C. Guardiola, C. Onder, A new knock event definition for knock detection and control optimization. Applied Thermal Engineering 131, 80–88 (2018)

    Article  Google Scholar 

  4. D. Chatterjee, O. Deutschmann, J. Warnatz, Detailed surface reaction mechanism in a three-way catalyst. Faraday Discussions 119, 371–384 (2002)

    Article  Google Scholar 

  5. P. Chen, J. Wang, Control-oriented model for integrated diesel engine and aftertreatment systems thermal management. Control Engineering Practice 22, 81–93 (2014)

    Article  Google Scholar 

  6. M. De Cesare, M. Parotto, F. Covassin, S. Sgatti, Electric low pressure fuel pump control for fuel saving, SAE Technical Paper, no. 2013-01-0339 (2013)

    Google Scholar 

  7. Y. Deng, H. Liu, X. Zhao, E. Jiaqiang, J. Chen, Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model. Appl. Energy 210, 279–287 (2018)

    Article  Google Scholar 

  8. S. Di Cairano, A. Bemporad, I.V. Kolmanovsky, D. Hrovat, Model predictive control of magnetically actuated mass spring dampers for automotive applications. Int. J. Control 80(11), 1701–1716 (2007)

    Article  MathSciNet  Google Scholar 

  9. S. Di Cairano, D. Yanakiev, A. Bemporad, I.V. Kolmanovsky, D. Hrovat, An mpc design flow for automotive control and applications to idle speed regulation, in IEEE Conference on Decision and Control (2008), pp. 5686–5691

    Google Scholar 

  10. S. Di Cairano, D. Yanakiev, A. Bemporad, I.V. Kolmanovsky, D. Hrovat, Model predictive idle speed control: design, analysis, and experimental evaluation. IEEE Trans. Control Syst. Technol. 20(1), 84–97 (2011)

    MATH  Google Scholar 

  11. W. Dressler, S. Ernst, Start and ignition assist systems, in Handbook of Diesel Engines, (Springer, Berlin, 2010), pp. 377–386

    Google Scholar 

  12. W. Egler, R.J. Giersch, F. Boecking, J. Hammer, J. Hlousek, P. Mattes, U. Projahn, W. Urner, B. Janetzky, Fuel injection systems, in Handbook of Diesel Engines (Springer, Berlin, 2010), pp. 127–174

    Google Scholar 

  13. L. Eriksson, Spark advance for optimal efficiency, in SAE Transactions (1999), pp. 789–800

    Google Scholar 

  14. L. Eriksson, L. Nielsen, Modeling and control of engines and drivelines (Wiley, 2014)

    Google Scholar 

  15. E. Feru, F. Willems, B. de Jager, M. Steinbuch, Model predictive control of a waste heat recovery system for automotive diesel engines, in International Conference on System Theory, Control and Computing (2014), pp. 658–663

    Google Scholar 

  16. E. Feru, F. Willems, B. De Jager, M. Steinbuch, Modeling and control of a parallel waste heat recovery system for EURO-VI heavy-duty diesel engines. Energies 7(10), 6571–6592 (2014)

    Article  Google Scholar 

  17. J. Gerhardt, H. Hönninger, H. Bischof, A new approach to functional and software structure for engine management systems – BOSCH ME7, in SAE Transactions (1998), pp. 1173–1184

    Google Scholar 

  18. L. Guzzella, C.H. Onder, Introduction to Modeling and Control of Internal Combustion Engine Systems (Springer, 2010)

    Google Scholar 

  19. R. Hedinger, P. Elbert, C. Onder, Optimal cold-start control of a gasoline engine. Energies 10(10), 1548–1564 (2017)

    Article  Google Scholar 

  20. J.B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill Education, 2018)

    Google Scholar 

  21. R. Isermann, Engine Modeling and Control (Springer, 2014)

    Google Scholar 

  22. L. Johannesson, N. Murgovski, E. Jonasson, J. Hellgren, B. Egardt, Predictive energy management of hybrid long-haul trucks. Control Eng. Pract. 41, 83–97 (2015)

    Article  Google Scholar 

  23. B. Johansson, Fuels and combustion, in Biofuels from Lignocellulosic Biomass: Innovations Beyond Bioethanol (Wiley, 2016)

    Google Scholar 

  24. M. Keller, M. Neumann, K. Eichler, S. Pischinger, D. Abel, T. Albin, Model predictive control for an organic rankine cycle system applied to a heavy-duty diesel engine, in IEEE Conference on Control Technology and Applications (2020)

    Google Scholar 

  25. K. Kim, K. Choi, K. Lee, K. Lee, Active coolant control strategies in automotive engines. Int. J. Autom. Technol. 11(6), 767–772 (2010)

    Article  Google Scholar 

  26. P. Kiwitz, C. Onder, L. Guzzella, Control-oriented modeling of a three-way catalytic converter with observation of the relative oxygen level profile. J. Process Control 22(6), 984–994 (2012)

    Article  Google Scholar 

  27. O. Leufvén, L. Eriksson, A surge and choke capable compressor flow model - validation and extrapolation capability. Control Eng. Pract. 21(12), 1871–1883 (2013)

    Article  Google Scholar 

  28. G. Mancini, J. Asprion, N. Cavina, C. Onder, L. Guzzella, Dynamic feedforward control of a diesel engine based on optimal transient compensation maps. Energies 7(8), 5400–5424 (2014)

    Article  Google Scholar 

  29. U. Projahn, H. Randoll, E. Biermann, J. Brückner, K. Funk, T. Küttner, W. Lehle, J. Zuern, Fuel injection system control systems, in Handbook of Diesel Engines (Springer, 2010), pp. 175–191

    Google Scholar 

  30. C.M. Schär, C.H. Onder, H.P. Geering, Control of an SCR catalytic converter system for a mobile heavy-duty application. IEEE Trans. Control Syst. Technol. 14(4), 641–653 (2006)

    Article  Google Scholar 

  31. C.M. Schär, C.H. Onder, H.P. Geering, M. Elsener, Control-oriented model of an SCR catalytic converter system, in SAE Technical Paper (2004)

    Google Scholar 

  32. D. Selmanaj, G. Panzani, S. van Dooren, J. Rosgren, C. Onder, Adaptive and unconventional strategies for engine knock control. IEEE Trans. Control Syst. Technol. 27(4), 1838–1845 (2019)

    Article  Google Scholar 

  33. J. Sowman, D.S. Laila, A.J. Cruden, P. Fussey, A. Truscott, A predictive control approach to diesel selective catalytic reduction, in European Control Conference (2015), pp. 3073–3078

    Google Scholar 

  34. A. Thomasson, O. Leufvén, I. Criscuolo, L. Eriksson, Modeling and validation of a boost pressure actuation system, for a series sequentially turbocharged SI engine. Control Eng. Pract. 21(12), 1860–1870 (2013)

    Article  Google Scholar 

  35. P. Tona, J. Peralez, A. Sciarretta, Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam rankine cycle, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (2012), pp. 695–701

    Google Scholar 

  36. S. Trimboli, S. Di Cairano, A. Bemporad, I.V. Kolmanovsky, Model predictive control for automotive time-delay processes: an application to air-to-fuel ratio control. IFAC Proc. Vol. 42(14), 90–95 (2009)

    Article  Google Scholar 

  37. H. Tschöke, A. Graf, J. Stein, M. Krüger, J. Schaller, N. Breuer, K. Engeljehringer, W. Schindler, Diesel engine exhaust emissions, in Handbook of Diesel Engines (Springer, 2010), pp. 417–485

    Google Scholar 

  38. G. Vagnoni, M. Eisenbarth, J. Andert, G. Sammito, J. Schaub, M. Reke, M. Kiausch, Smart rule-based diesel engine control strategies by means of predictive driving information. Int. J. Engine Res. 20(10), 1047–1058 (2019)

    Article  Google Scholar 

  39. C. Vermillion, K. Butts, K. Reidy, Model predictive engine torque control with real-time driver-in-the-loop simulation results, in American Control Conference (2010), pp. 1459–1464

    Google Scholar 

  40. D. von Wissel, A. Husson, V. Talon, L. Lansky, D. Pachner, M. Uchanski, Reducing engine calibration time and cost with model predictive control, in IAV Automotive Powertrain Control Systems Conference (2014)

    Google Scholar 

  41. A. Walker, Controlling particulate emissions from diesel vehicles. Topics in Catal. 28(1), 165–170 (2004)

    Article  Google Scholar 

  42. T.T. Wang, J. Wagner, Advanced automotive thermal management-nonlinear radiator fan matrix control. Control Eng. Pract. 41, 113–123 (2015)

    Article  Google Scholar 

  43. F. Willems, R. Cloudt, Experimental demonstration of a new model-based SCR control strategy for cleaner heavy-duty diesel engines. IEEE Trans. Control Syst. Technol. 19(5), 1305–1313 (2010)

    Article  Google Scholar 

  44. F. Willems, R. Cloudt, E. Van Den Eijnden, M. Van Genderen, R. Verbeek, B. de Jager, W. Boomsma, I. van den Heuvel, Is closed-loop SCR control required to meet future emission targets? inSAE Technical Paper, no. 2007-01-1574 (2007)

    Google Scholar 

  45. F. Willems, P. van Gompel, X. Seykens, S. Wilkins,Robust real-world emissions by integrated ADF and powertrain control development, in in: Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions (Springer, 2019), pp. 29–45

    Google Scholar 

  46. X. Yuan, H. Liu, Y. Gao, Diesel engine SCR control: current development and future challenges. Emiss. Control Sci. Technol. 1(2), 121–133 (2015)

    Article  Google Scholar 

  47. X. Zhen, Y. Wang, S. Xu, Y. Zhu, C. Tao, T. Xu, M. Song, The engine knock analysis-an overview. Appl. Energy 92, 628–636 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thivaharan Albin Rajasingham .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Albin Rajasingham, T. (2021). SI and CI Engine Control Architectures. In: Nonlinear Model Predictive Control of Combustion Engines. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-030-68010-7_7

Download citation

Publish with us

Policies and ethics