Skip to main content

Hot-Working Operations

  • Chapter
  • First Online:
Operations and Basic Processes in Steelmaking

Abstract

Hot working is the initial step in the mechanical working of most metals and alloys. Not only does hot-working result in a decrease in the energy required to deform the metal and an increased ability to flow without cracking, but the rapid diffusion at hot-working temperatures aids in decreasing the chemical inhomogeneities of the cast-ingot structure. Blowholes and porosity are eliminated by the welding together of these cavities, and the coarse columnar grains of the casting are broken down and refined into smaller equiaxed recrystallized grains. These changes in structure from hot working improves ductility and toughness over the cast state.

However, there are certain disadvantages to hot-working. First, because high temperatures are usually involved, surface reactions between the metal and the furnace atmosphere become a problem. Ordinarily hot working is done in air, oxidation results, and a considerable amount of metal may be lost. Second, surface decarburization of hot-worked steel can be a serious problem, and frequently extensive surface finishing is required to remove the decarburized layer. Rolled-in oxide makes it difficult to produce good surface finishes on hot-rolled products, and because allowance must be made for expansion and contraction, the dimensional tolerances for hot-worked mill products are greater than for cold-worked products. Further, the structure and properties of hot-worked metals are generally not so uniform over the cross section as in metals which have been cold worked and annealed. Since the deformation is always greater in the surface layers, the metal will have a finer recrystallized grain size in this region.

This way, this chapter five is dedicated to the hot working of the steel, and it is complemented with several exercises, problems, and case-studies related with the industrial practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbosa R, Boratto F, Yue S, Jonas JJ (1987) The influence of chemical composition on the recrystallisation behaviour of microalloyed steels. In: Proceedings symposium on processing, microstructure and properties of HSLA steel, Pittsburgh, pp 51–56

    Google Scholar 

  • Belzunce FJ, Rodríguez C, Fernández B (1995) Rolling procedure and thickness effects on strength and fracture behavior of microalloyed steels. Mater Sci Technol 11:252–257

    Article  Google Scholar 

  • Davies GJ, Edington JW, Cutler CP, Padmanabhan KA (1970) Superplasticity: a review. J Mater Sci 5:1091–1102

    Article  Google Scholar 

  • Dieter GE (1976) Mechanical metallurgy, 2nd edn. McGraw Hill, New York, USA

    Google Scholar 

  • Dutta B, Sellars CM (1986) Strengthening of austenite by niobium during hot rolling of microalloyed steel. Mater Sci Technol 2:146–153

    Article  Google Scholar 

  • Dutta B, Sellars CM (1987) Effect of composition and process variables on Nb (C, N) precipitation in niobium microalloyed austenite. Mater Sci Technol 3:197–205

    Article  Google Scholar 

  • Fernández S, Quintana MJ, García JO, Verdeja LF, González R, Verdeja JI (2013) Superplastic HSLA steels: microstructure and failure. J Failure Anal 13:368–376

    Article  Google Scholar 

  • Fernández-Fernández S (2012) La Superplasticidad en Aceros de Bajo Contenido en Carbono, Master Thesis, June 2012. University of Oviedo, Oviedo, Asturias, Spain, Escuela Técnica Superior de Ingenieros de Minas de Oviedo

    Google Scholar 

  • Flemings MC (1974) Solidification processing. Ed. McGraw Hill, New York, United States of America

    Google Scholar 

  • Quintana Hernández MJ (2013) Room temperature and high temperature behavior of low carbon steels manufactured by controlled rolling process, PhD Thesis, September 2013, Escuela Técnica Superior de Ingenieros de Minas de Oviedo, University of Oviedo, Oviedo, Asturias, Spain

    Google Scholar 

  • Pero-Sanz JA (2004) Aceros: Metalurgia Física, Selección y Diseño. Ed. CIE Dossat 2000, Madrid, Spain

    Google Scholar 

  • Pero-Sanz JA, Quintana-Hernández MJ, Verdeja LF (2017) Solidification and Solid-State Transformations of Metals and, Alloys. Elsevier, Boston, United States of America

    Google Scholar 

  • Pero-Sanz JA, Fernández-González D, Verdeja LF (2019) Structural materials: properties and, selection. Springer International Publishing, Cham

    Book  Google Scholar 

  • Petite MM, Monsalve A, Gutiérrez I, Zaitegui J, Larburu JI (1998) Modelización de la evolución microestructural durante el recocido continuo de chapas de acero bajo en carbono. Predicción de las propiedades mecánicas. Revista De Metalurgia De Madrid 34:333–337

    Article  Google Scholar 

  • Pickering FB (1978) Physical metallurgy and design of steels, Ed. Applied Science Publishers, London, United Kingdom

    Google Scholar 

  • Porter DA, Easterling KE (1992) Phase transformations in metals and alloys, 2nd edn. Nelson Thornes Ltd., Cheltenham, United Kingdom

    Book  Google Scholar 

  • Sellars CM, Whiteman JA (1979) Recrystallization and grain growth in hot rolling. Metal Sci 187–194

    Google Scholar 

  • Tamura I, Ouchi C, Tanaka T, Sekine H (1988) Thermomechanical processing of high strength low alloy steels. Ed. Butterworths, London, United Kingdom

    Google Scholar 

  • Tanaka T (1981) Controlled rolling of steel plate and strip. Int Metals Rev 4:185–212

    Google Scholar 

  • Urcola Galarza JJ, Fuentes Pérez M (1980a) Deformación en caliente. I parte: Principios fundamentales. Revista De Metalurgia Del CENIM 16:263–267

    Google Scholar 

  • Urcola Galarza JJ, Fuentes Pérez M (1980b) Deformación en caliente. II parte: Resistencia mecánica y ductilidad. Revista De Metalurgia Del CENIM 16:337–342

    Google Scholar 

  • Urcola Galarza JJ, Fuentes Pérez M (1981) Deformación en caliente. III parte: Cambios microstructurales durante y después de la deformación. Revista De Metalurgia Del CENIM 17:9–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Felipe Verdeja González .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verdeja González, L.F., Fernández González, D., Verdeja González, J.I. (2021). Hot-Working Operations. In: Operations and Basic Processes in Steelmaking. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-68000-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68000-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67999-6

  • Online ISBN: 978-3-030-68000-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics