Skip to main content

Rigidity, Graphs and Hausdorff Dimension

  • Conference paper
  • First Online:
Combinatorial and Additive Number Theory IV (CANT 2020)

Abstract

A set of \(k+1\) points in Euclidean space is called a \((k+1)\)-point configuration. Two configurations are congruent if they are equal up to an affine isometry. Given a compact subset E of \(\mathbb R^d\), \(d\ge 2\) of Hausdorff dimension greater than \(d-\frac{1}{k+1}\) we prove that the Lebesgue measure of noncongruent \((k+1)\)-point configurations in E is positive, for \(k>d\), complementing the results of [11] for \(k\le d\).

The second and fourth listed authors were partially supported by the NSA Grant H98230-15-1-0319. The third listed author was partially supported by the Simons Foundation Collaboration Grant No. 422190.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Asimow and B. Roth. The rigidity of graphs. Trans. Amer. Math. Soc., 245:279–289, 1978.

    Article  MathSciNet  Google Scholar 

  2. Michael Bennett, Derrick Hart, Alex Iosevich, Jonathan Pakianathan, and Misha Rudnev. Group actions and geometric combinatorics in \(\mathbb{F}_q^d\). Forum Math., 29(1):91–110, 2017.

    Article  MathSciNet  Google Scholar 

  3. Mike Bennett, Alex Iosevich, and Jonathan Pakianathan. Three-point configurations determined by subsets of \(\mathbb{F}_q^2\) via the Elekes-Sharir paradigm. Combinatorica, 34(6):689–706, 2014.

    Article  MathSciNet  Google Scholar 

  4. Michael Bennett, Alexander Iosevich, and Krystal Taylor. Finite chains inside thin subsets of \(\mathbb{R}^d\). Anal. PDE, 9(3):597–614, 2016.

    Article  MathSciNet  Google Scholar 

  5. J. Bourgain. A Szemerédi type theorem for sets of positive density in \({\bf R}^k\). Israel J. Math., 54(3):307–316, 1986.

    Google Scholar 

  6. Ciprian Borcea and Ileana Streinu. The number of embeddings of minimally rigid graphs. Discrete Comput. Geom., 31(2):287–303, 2004.

    Article  MathSciNet  Google Scholar 

  7. Vincent Chan, Izabella Ł aba, and Malabika Pramanik. Finite configurations in sparse sets. J. Anal. Math., 128:289–335, 2016.

    Google Scholar 

  8. M. Burak Erdŏ gan. A bilinear Fourier extension theorem and applications to the distance set problem. Int. Math. Res. Not., (23):1411–1425, 2005.

    Google Scholar 

  9. K. J. Falconer. The geometry of fractal sets, volume 85 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  10. Hillel Furstenberg, Yitzchak Katznelson, and Benjamin Weiss. Ergodic theory and configurations in sets of positive density. In Mathematics of Ramsey theory, volume 5 of Algorithms Combin., pages 184–198. Springer, Berlin, 1990.

    Google Scholar 

  11. Allan Greenleaf, Alex Iosevich, Bochen Liu, and Eyvindur Palsson. A group-theoretic viewpoint on Erdős-Falconer problems and the Mattila integral. Rev. Mat. Iberoam., 31(3):799–810, 2015.

    Article  MathSciNet  Google Scholar 

  12. Allan Greenleaf, Alex Iosevich, and Malabika Pramanik. On necklaces inside thin subsets of \(\mathbb{R}^d\). Math. Res. Lett., 24(2):347–362, 2017.

    Article  MathSciNet  Google Scholar 

  13. Jack Graver, Brigitte Servatius, and Herman Servatius. Combinatorial rigidity, volume 2 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1993.

    Google Scholar 

  14. L. Henneberg. Die graphische statik der starren systeme. Leipzig, 1911.

    Google Scholar 

  15. Derrick Hart and Alex Iosevich. Ubiquity of simplices in subsets of vector spaces over finite fields. Anal. Math., 34(1):29–38, 2008.

    Article  MathSciNet  Google Scholar 

  16. Kevin Henriot, Izabella Ł aba, and Malabika Pramanik. On polynomial configurations in fractal sets. Anal. PDE, 9(5):1153–1184, 2016.

    Google Scholar 

  17. Alex Iosevich and Bochen Liu. Falconer distance problem, additive energy and Cartesian products. Ann. Acad. Sci. Fenn. Math., 41(2):579–585, 2016.

    Article  MathSciNet  Google Scholar 

  18. G. Laman. On graphs and rigidity of plane skeletal structures. J. Engrg. Math., 4:331–340, 1970.

    Article  MathSciNet  Google Scholar 

  19. J. Milnor. On the Betti numbers of real varieties. Proc. Amer. Math. Soc., 15:275–280, 1964.

    Article  MathSciNet  Google Scholar 

  20. I. G. Petrovskii and O. A. Oleinik. On the topology of real algebraic surfaces. Amer. Math. Soc. Translation, 1952(70):20, 1952.

    MathSciNet  Google Scholar 

  21. B. Roth. Rigid and flexible frameworks. Amer. Math. Monthly, 88(1):6–21, 1981.

    Article  MathSciNet  Google Scholar 

  22. Per Sjölin. Estimates of spherical averages of Fourier transforms and dimensions of sets. Mathematika, 40(2):322–330, 1993.

    Article  MathSciNet  Google Scholar 

  23. René Thom. Sur l’homologie des variétés algébriques réelles. In Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pages 255–265. Princeton Univ. Press, Princeton, N.J., 1965.

    Google Scholar 

  24. Thomas Wolff. Decay of circular means of Fourier transforms of measures. Internat. Math. Res. Notices, (10):547–567, 1999.

    Article  MathSciNet  Google Scholar 

  25. Thomas H. Wolff. Lectures on harmonic analysis, volume 29 of University Lecture Series. American Mathematical Society, Providence, RI, 2003. With a foreword by Charles Fefferman and preface by Izabella Ł aba, Edited by Ł aba and Carol Shubin.

    Google Scholar 

  26. Tamar Ziegler. Nilfactors of \(\mathbb{R}^m\)-actions and configurations in sets of positive upper density in \(\mathbb{R}^m\). J. Anal. Math., 99:249–266, 2006.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Iosevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chatzikonstantinou, N., Iosevich, A., Mkrtchyan, S., Pakianathan, J. (2021). Rigidity, Graphs and Hausdorff Dimension. In: Nathanson, M.B. (eds) Combinatorial and Additive Number Theory IV. CANT 2020. Springer Proceedings in Mathematics & Statistics, vol 347. Springer, Cham. https://doi.org/10.1007/978-3-030-67996-5_5

Download citation

Publish with us

Policies and ethics