Skip to main content

HTAD: A Home-Tasks Activities Dataset with Wrist-Accelerometer and Audio Features

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2021)

Abstract

In this paper, we present HTAD: A Home Tasks Activities Dataset. The dataset contains wrist-accelerometer and audio data from people performing at-home tasks such as sweeping, brushing teeth, washing hands, or watching TV. These activities represent a subset of activities that are needed to be able to live independently. Being able to detect activities with wearable devices in real-time is important for the realization of assistive technologies with applications in different domains such as elderly care and mental health monitoring. Preliminary results show that using machine learning with the presented dataset leads to promising results, but also there is still improvement potential. By making this dataset public, researchers can test different machine learning algorithms for activity recognition, especially, sensor data fusion methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.kaggle.com/yvaizman/the-extrasensory-dataset.

References

  1. Al Masum Shaikh, M., Molla, M., Hirose, K.: Automatic life-logging: a novel approach to sense real-world activities by environmental sound cues and common sense. In: 11th International Conference on Computer and Information Technology, ICCIT 2008, pp. 294–299, December 2008. https://doi.org/10.1109/ICCITECHN.2008.4803018

  2. Banos, O., Galvez, J.M., Damas, M., Pomares, H., Rojas, I.: Window size impact in human activity recognition. Sensors 14(4), 6474–6499 (2014). https://doi.org/10.3390/s140406474. http://www.mdpi.com/1424-8220/14/4/6474

  3. Bruno, B., Mastrogiovanni, F., Sgorbissa, A., Vernazza, T., Zaccaria, R.: Analysis of human behavior recognition algorithms based on acceleration data. In: 2013 IEEE International Conference on Robotics and Automation, pp. 1602–1607. IEEE (2013)

    Google Scholar 

  4. Ceron, J.D., Lopez, D.M., Ramirez, G.A.: A mobile system for sedentary behaviors classification based on accelerometer and location data. Comput. Ind. 92, 25–31 (2017)

    Article  Google Scholar 

  5. Ciucurel, C., Iconaru, E.I.: The importance of sedentarism in the development of depression in elderly people. Proc. - Soc. Behav. Sci. 33 (Supplement C), 722–726 (2012). https://doi.org/10.1016/j.sbspro.2012.01.216. http://www.sciencedirect.com/science/article/pii/S1877042812002248. pSIWORLD 2011

  6. Damen, D., et al.: Scaling egocentric vision: the dataset. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 753–771. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_44

    Chapter  Google Scholar 

  7. Dernbach, S., Das, B., Krishnan, N.C., Thomas, B.L., Cook, D.J.: Simple and complex activity recognition through smart phones. In: 2012 8th International Conference on Intelligent Environments (IE), pp. 214–221, June 2012. https://doi.org/10.1109/IE.2012.39

  8. Galván-Tejada, C.E., et al.: An analysis of audio features to develop a human activity recognition model using genetic algorithms, random forests, and neural networks. Mob. Inf. Syst. 2016, 1–10 (2016)

    Google Scholar 

  9. Garcia, E.A., Brena, R.F.: Real time activity recognition using a cell phone’s accelerometer and Wi-Fi. In: Workshop Proceedings of the 8th International Conference on Intelligent Environments. Ambient Intelligence and Smart Environments, vol. 13, pp. 94–103. IOS Press (2012). https://doi.org/10.3233/978-1-61499-080-2-94

  10. Garcia-Ceja, E., Brena, R.: Building personalized activity recognition models with scarce labeled data based on class similarities. In: García-Chamizo, J.M., Fortino, G., Ochoa, S.F. (eds.) UCAmI 2015. LNCS, vol. 9454, pp. 265–276. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26401-1_25

    Chapter  Google Scholar 

  11. Garcia-Ceja, E., Riegler, M., Nordgreen, T., Jakobsen, P., Oedegaard, K.J., Tørresen, J.: Mental health monitoring with multimodal sensing and machine learning: a survey. Pervasive Mob. Comput. 51, 1–26 (2018). https://doi.org/10.1016/j.pmcj.2018.09.003. http://www.sciencedirect.com/science/article/pii/S1574119217305692

  12. Hayashi, T., Nishida, M., Kitaoka, N., Takeda, K.: Daily activity recognition based on DNN using environmental sound and acceleration signals. In: 2015 23rd European Signal Processing Conference (EUSIPCO), pp. 2306–2310, August 2015. https://doi.org/10.1109/EUSIPCO.2015.7362796

  13. Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N.: Multisensor data fusion: a review of the state-of-the-art. Inf. Fusion 14(1), 28–44 (2013). https://doi.org/10.1016/j.inffus.2011.08.001. http://www.sciencedirect.com/science/article/pii/S1566253511000558

  14. Ligges, U., Krey, S., Mersmann, O., Schnackenberg, S.: tuneR: Analysis of music (2014). http://r-forge.r-project.org/projects/tuner/

  15. Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10(2), 1154–1175 (2010). https://doi.org/10.3390/s100201154. http://www.mdpi.com/1424-8220/10/2/1154

  16. Margarito, J., Helaoui, R., Bianchi, A.M., Sartor, F., Bonomi, A.G.: User-independent recognition of sports activities from a single wrist-worn accelerometer: a template-matching-based approach. IEEE Trans. Biomed. Eng. 63(4), 788–796 (2016)

    Google Scholar 

  17. Mitchell, E., Monaghan, D., O’Connor, N.E.: Classification of sporting activities using smartphone accelerometers. Sensors 13(4), 5317–5337 (2013)

    Article  Google Scholar 

  18. Nishida, M., Kitaoka, N., Takeda, K.: Development and preliminary analysis of sensor signal database of continuous daily living activity over the long term. In: 2014 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pp. 1–6. IEEE (2014)

    Google Scholar 

  19. Richter, J., Wiede, C., Dayangac, E., Shahenshah, A., Hirtz, G.: Activity recognition for elderly care by evaluating proximity to objects and human skeleton data. In: Fred, A., De Marsico, M., Sanniti di Baja, G. (eds.) ICPRAM 2016. LNCS, vol. 10163, pp. 139–155. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53375-9_8

    Chapter  Google Scholar 

  20. Vaizman, Y., Ellis, K., Lanckriet, G., Weibel, N.: Extrasensory app: data collection in-the-wild with rich user interface to self-report behavior. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018)

    Google Scholar 

  21. Wang, X., Rosenblum, D., Wang, Y.: Context-aware mobile music recommendation for daily activities. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 99–108. ACM (2012)

    Google Scholar 

  22. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Series in Data Management Systems, 3rd edn. Morgan Kaufmann, Burlington (2011)

    Google Scholar 

  23. Zhang, M., Sawchuk, A.A.: Motion primitive-based human activity recognition using a bag-of-features approach. In: ACM SIGHIT International Health Informatics Symposium (IHI), Miami, Florida, USA, pp. 631–640, January 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Garcia-Ceja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garcia-Ceja, E. et al. (2021). HTAD: A Home-Tasks Activities Dataset with Wrist-Accelerometer and Audio Features. In: Lokoč, J., et al. MultiMedia Modeling. MMM 2021. Lecture Notes in Computer Science(), vol 12573. Springer, Cham. https://doi.org/10.1007/978-3-030-67835-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67835-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67834-0

  • Online ISBN: 978-3-030-67835-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics