Skip to main content

Abstract

The purpose of Geometric Invariant Theory (abbreviated GIT) is to provide a way to define a quotient of an algebraic variety X by the action of a reductive complex algebraic group G with an algebro-geometric structure. In this chapter we present a sketch of the treatment with a variety of examples. We also review the notion of stability from the differential and symplectic points of view and explore the idea of maximal unstability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borel, A., Linear Algebraic Groups, second edition, Grad. Texts in Math., 126, Springer-Verlag New York, (1991).

    Google Scholar 

  2. Georgoulas V., Robbin J.W., Salamon D., The moment-weight inequality and the Hilbert-Mumford criterion, Preprint, ETH-Zürich, arXiv:1311.0410 (2013, last version (2019)).

    Google Scholar 

  3. Gieseker D., Geometric invariant theory and the moduli of bundles, Lecture Publication Series, IAS/Park City Mathematics Series v.00, (1994).

    Google Scholar 

  4. Hilbert D., Über die vollen Invariantensysteme, Math. Ann. 42, (1983) 313–373.

    Article  Google Scholar 

  5. Kapovich M., Millson J.J., The symplectic geometry of polygons in Euclidean space, J. Diff. Geom. 44 no. 3, (1996) 479–513.

    MathSciNet  MATH  Google Scholar 

  6. Kempf G., Instability in invariant theory, Ann. of Math. (2) 108 no.1, (1978) 299–316.

    Google Scholar 

  7. Kempf G., Ness L., The length of vectors in representation spaces, In: Lønsted K. (eds) Algebraic Geometry. Lecture Notes in Mathematics, vol 732, Springer-Verlag Berlin Heidelberg, (1978) 233–244.

    Chapter  Google Scholar 

  8. King A.D., Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (180), (1994) 515–530.

    Google Scholar 

  9. Kirwan F., Cohomology of quotients in symplectic and algebraic geometry, Mathematical notes 34 Princeton University Press, Princeton, (1984).

    Google Scholar 

  10. Meyer K., Symmetries and integrals in mechanics, Dynamical Systems (M. Peixoto, ed.), Academic Press New York, (1973) 259–273.

    Google Scholar 

  11. Mukai, S., An Introduction to Invariants and Moduli, translated by W.M. Oxbury, Cambridge Studies in Advanced Mathematics 81, Cambridge University Press, Cambridge (2003).

    Google Scholar 

  12. Mumford D., Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34, Springer-Verlag Berlin Heidelberg New York (1965).

    Google Scholar 

  13. Mumford D., Fogarty J., Kirwan F., Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) 34, Springer-Verlag Berlin Heidelberg (1994).

    Google Scholar 

  14. Marsden J., Weinstein A., Reduction of symplectic manifolds with symmetry, Rep. Math. Phys. 5, (1974) 121–130.

    Article  MathSciNet  Google Scholar 

  15. Nagata M., Invariants of a group in an affine ring, J. Math. Kyoto Univ. 3, (1964) 369–377.

    MathSciNet  MATH  Google Scholar 

  16. Newstead P.E., Introduction to Moduli Problems and Orbit Spaces, TATA Institute of Fundamental Research Lectures on Mathematics and Physics 51, Bombay, Narosa Publishing House, New Delhi, (1978).

    Google Scholar 

  17. Schmitt A.H.W., Geometric Invariant Theory and Decorated Principal Bundles, EMS Publishing House (2008).

    Google Scholar 

  18. Seshadri C.S., Space of unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 85, (1967) 303–336.

    Google Scholar 

  19. Seshadri, C.S., Fibrés vectoriels sur les courbes algébriques, Astérisque 96, (1982).

    Google Scholar 

  20. Thomas R.P., Notes on GIT and symplectic reduction for bundles and varieties, Surveys in differential geometry 10: A Tribute to Professor S.-S. Chern., (2006) 221–273.

    Google Scholar 

  21. Woodward C., Moment maps and geometric invariant theory, Actions hamiltoniennes: invariants et classification, Les cours du C.I.R.M. 1 num.1, (2010) 55–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zamora Saiz, A., Zúñiga-Rojas, R.A. (2021). Geometric Invariant Theory. In: Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-67829-6_3

Download citation

Publish with us

Policies and ethics