Skip to main content

Tightness of Sensitivity and Proximity Bounds for Integer Linear Programs

  • Conference paper
  • First Online:
  • 1112 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12607))

Abstract

We consider Integer Linear Programs (ILPs), where each variable corresponds to an integral point within a polytope \(\mathcal {P}\subseteq \mathbb {R}^{d}\), i. e., ILPs of the form \(\min \{c^{\top }x\mid \sum _{p\in \mathcal {P}\cap \mathbb {Z}^d} x_p p = b, x\in \mathbb {Z}^{|\mathcal {P}\cap \mathbb {Z}^d|}_{\ge 0}\}\). The distance between an optimal fractional solution and an optimal integral solution (called the proximity) is an important measure. A classical result by Cook et al. (Math. Program., 1986) shows that it is at most \(\varDelta ^{\varTheta (d)}\) where \(\varDelta =\Vert \mathcal {P}\cap \mathbb {Z}^{d} \Vert _{\infty }\) is the largest coefficient in the constraint matrix. Another important measure studies the change in an optimal solution if the right-hand side b is replaced by another right-hand side \(b'\). The distance between an optimal solution x w.r.t. b and an optimal solution \(x'\) w.r.t. \(b'\) (called the sensitivity) is similarly bounded, i. e., \(\Vert b-b' \Vert _{1}\cdot \varDelta ^{\varTheta (d)}\), also shown by Cook et al.  (Math. Program., 1986).

Even after more than thirty years, these bounds are essentially the best known bounds for these measures. While some lower bounds are known for these measures, they either only work for very small values of \(\varDelta \), require negative entries in the constraint matrix, or have fractional right-hand sides. Hence, these lower bounds often do not correspond to instances from algorithmic problems. This work presents for each \(\varDelta > 0\) and each \(d > 0\) ILPs of the above type with non-negative constraint matrices such that their proximity and sensitivity is at least \(\varDelta ^{\varTheta (d)}\). Furthermore, these instances are closely related to instances of the Bin Packing problem as they form a subset of columns of the configuration ILP. We thereby show that the results of Cook et al. are indeed tight, even for instances arising naturally from problems in combinatorial optimization.

This work was supported by DFG project JA 612/20-1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akiyama, J., Kano, M.: Matchings and 1-factors. In: Factors and Factorizations of Graphs, pp. 15–67. Springer (2011). https://doi.org/10.1007/978-3-642-21919-1_2

  2. Aliev, I., Henk, M., Oertel, T.: Distances to lattice points in knapsack polyhedra. Math. Program. 175–198 (2019). https://doi.org/10.1007/s10107-019-01392-1

  3. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling on parallel machines. J. Sched. 1(1), 55–66 (1998)

    Article  MathSciNet  Google Scholar 

  4. Caprara, A., Dell’Amico, M., Díaz, J.C.D., Iori, M., Rizzi, R.: Friendly bin packing instances without integer round-up property. Math. Program. 150(1), 5–17 (2015)

    Article  MathSciNet  Google Scholar 

  5. Cook, W.J., Gerards, A.M.H., Schrijver, A., Tardos, É.: Sensitivity theorems in integer linear programming. Math. Program. 34(3), 251–264 (1986)

    Article  MathSciNet  Google Scholar 

  6. Cslovjecsek, J., Eisenbrand, F., Weismantel, R.: N-fold integer programming via LP rounding. CoRR abs/2002.07745 (2020)

    Google Scholar 

  7. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer programming using the steinitz lemma, 16(1), 5:1–5:14. ACM (2020)

    Google Scholar 

  8. Epstein, L., Levin, A.: A robust APTAS for the classical bin packing problem. Math. Program. 119(1), 33–49 (2009)

    Article  MathSciNet  Google Scholar 

  9. Epstein, L., Levin, A.: Robust approximation schemes for cube packing. SIAM J. Optim. 23(2), 1310–1343 (2013)

    Article  MathSciNet  Google Scholar 

  10. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock problem. Oper. Res. 9(6), 849–859 (1961)

    Google Scholar 

  11. Goemans, M.X., Rothvoß, T.: Polynomiality for bin packing with a constant number of item types. In: SODA, pp. 830–839. SIAM (2014)

    Google Scholar 

  12. Hadamard, J.: Resolution d’une question relative aux determinants. Bull. des Sci. Math. 2, 240–246 (1893)

    MATH  Google Scholar 

  13. Hochbaum, D.S.: Monotonizing linear programs with up to two nonzeroes per column. Oper. Res. Lett. 32(1), 49–58 (2004)

    Article  MathSciNet  Google Scholar 

  14. Hochbaum, D.S., Shanthikumar, J.G.: Convex separable optimization is not much harder than linear optimization, 37(4), 843–862. ACM (1990)

    Google Scholar 

  15. Holton, D.A., Sheehan, J.: The Petersen Graph. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  16. Jansen, K., Klein, K.-M.: A robust AFPTAS for online bin packing with polynomial migration. SIAM J. Discret. Math. 33(4), 2062–2091 (2019)

    Article  MathSciNet  Google Scholar 

  17. Jansen, K., Klein, K.-M., Maack, M., Rau, M.: Empowering the configuration-ip - new PTAS results for scheduling with setups times. In: ITCS, volume 124 of LIPIcs, pp. 44:1–44:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  18. Jansen, K., Klein, K.-M., Verschae, J.: Closing the gap for makespan scheduling via sparsification techniques. In: ICALP, volume 55 of LIPIcs, pp. 72:1–72:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

    Google Scholar 

  19. Jansen, K., Lassota, A., Maack, M.: Approximation algorithms for scheduling with class constraints. In: SPAA (in print) (2020)

    Google Scholar 

  20. Jansen, K., Lassota, A., Rohwedder, L.: Near-linear time algorithm for n-fold ILPS via color coding. In: ICALP, volume 132 of LIPIcs, pp. 75:1–75:13 (2019)

    Google Scholar 

  21. Jansen, K., Robenek, C.: Scheduling jobs on identical and uniform processors revisited. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp. 109–122. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29116-6_10

    Chapter  MATH  Google Scholar 

  22. Kempe, A.B.: A memoir in the theory of mathematical form. Philos. Trans. R. Soc. Lond. 177, 1–70 (1886)

    Google Scholar 

  23. Lee, J., Paat, J., Stallknecht, I., Xu, L.: Improving proximity bounds using sparsity. CoRR abs/2001.04659 (2020)

    Google Scholar 

  24. Paat, J., Weismantel, R., Weltge, S.: Distances between optimal solutions of mixed-integer programs. Math. Program. 455–468 (2018). https://doi.org/10.1007/s10107-018-1323-z

  25. Petersen, J.: Sur le théorèm de tait. L’Intermédiare des Mathématiciens 5(1), 225–227 (1898)

    Google Scholar 

  26. Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migration. Math. Oper. Res. 34(2), 481–498 (2009)

    Article  MathSciNet  Google Scholar 

  27. Schrijver, A.: Theory of linear and integer programming. Wiley-Interscience series in discrete mathematics and optimization. Wiley (1999)

    Google Scholar 

  28. Skutella, M., Verschae, J.: Robust polynomial-time approximation schemes for parallel machine scheduling with job arrivals and departures. Math. Oper. Res. 41(3), 991–1021 (2016)

    Article  MathSciNet  Google Scholar 

  29. Subramani, K.: On deciding the non-emptiness of 2sat polytopes with respect to first order queries. Math. Log. Q. 50(3), 281–292 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors want to thank Lars Rohwedder for enjoyable and fruitful discussions at the beginning of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Lassota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berndt, S., Jansen, K., Lassota, A. (2021). Tightness of Sensitivity and Proximity Bounds for Integer Linear Programs. In: Bureš, T., et al. SOFSEM 2021: Theory and Practice of Computer Science. SOFSEM 2021. Lecture Notes in Computer Science(), vol 12607. Springer, Cham. https://doi.org/10.1007/978-3-030-67731-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67731-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67730-5

  • Online ISBN: 978-3-030-67731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics