Skip to main content
  • 1919 Accesses

Summary

Folates play an essential role in one-carbon methyl transfer reactions, mediating several biological processes including DNA synthesis, regulation of gene expression through methylation and formylation reactions, embryonic central nervous system development, synthesis and breakdown of amino acids, and synthesis of thymidines, purines, and neurotransmitters (Blount et al. 1997; Linhart et al. 2009; Ghoshal et al. 2006; Pogribny et al. 2008; Fournier et al. 2002). In mammals, folates are mostly derived from exogenous sources as folate is stored in the liver for few months. The biologically active folate derivative is 5,6,7,8-tetrahydrofolate (THF). Dietary folate is absorbed in the intestine via the proton-coupled folate transporter (PCFT). In the cytoplasm, interconversion of 5,10-methylene-THF and 5,10-methenyl-THF, interconversion of 5,10-methenyl-THF and 10-formyl-THF, and reaction of THF with formate to synthesize 10-formyl-THF are mediated by the MTHFD1 gene that encodes a trifunctional protein. Metabolism of 5,10-methylene-THF to 5-methyl-THF in the liver is catalyzed by methylene-THF reductase (MTHFR). 5-Methyl-THF is then widely distributed in the bloodstream. The transport of 5-methyl-THF inside the cells is mediated by different transport systems that include the proton-coupled folate transporter (PCFT), the reduced folate carrier 1 (RFC1), and the two GPI-anchored receptors, folate receptor alpha (FRα) and beta (FRβ) (Matherly and Goldman 2003). The physiological form of folate, 5-methyl-THF, is actively transported to the central nervous system by FRα-mediated endocytosis in choroid epithelial cells, reaching a higher concentration in the cerebrospinal fluid when compared to the serum. FRα is a high-affinity low-capacity receptor that functions at a nanomolar range of extracellular folate concentrations (Weitman et al. 1992). Glutamate formiminotransferase-cyclodeaminase (FTCD) is a bifunctional enzyme that catalyzes the folate-dependent degradation of N-formimino-l-glutamic acid (FIGLU) to form 5,10-methenyltetrahydrofolate, glutamate, and ammonia, the final two reactions of the pathway responsible for the degradation of l-histidine. Thus far, seven different inherited disorders of folate metabolism are known which lead to folate deficiency including hereditary folate malabsorption, folate receptor alpha deficiency, 5,10-methylenete-THF reductase deficiency, 5,10-methenyl-THF synthetase deficiency, dihydrofolate reductase deficiency, and 5,10-methylenete-THF dehydrogenase deficiency (Watkins et al. 2011; Watkins and Rosenblatt 2012). Reduced folate carrier deficiency presenting with recurrent megaloblastic anemia has been reported very recently in a single patient carrying a homozygous deletion of the Phe212 residue (Svaton et al. 2020). Glutamate formimino transferase deficiency is considered as a non-disease, despite being former characterized by megaloblastic anemia, mental retardation and elevated urine FIGLU following a histidine load (Hilton et al. 2003). Mitochondrial 10-formyltetrahydrofolate dehydrogenase, encoded by ALDH1L2, affects mitochondrial pool of metabolites relevant to beta-oxidation of fatty acids and presents with neuro-ichthyotic syndrome (Sarret et al. 2019). For more details on FIGLU-uria, see Chap. 71.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baethmann M, Wendel U, Hoffmann GF, Gohlich-Ratmann G, Kleinlein B, Seiffert P, et al. Hydrocephalus internus in two patients with 5,10-methylenetetrahydrofolate reductase deficiency. Neuropediatrics. 2000;31(6):314–7.

    Article  CAS  Google Scholar 

  • Banka S, Blom HJ, Walter J, Aziz M, Urquhart J, Clouthier CM, et al. Identification and characterization of an inborn error of metabolism caused by dihydrofolate reductase deficiency. Am J Hum Genet. 2011;88(2):216–25.

    Article  CAS  Google Scholar 

  • Bidla G, Watkins D, Chery C, Froese DS, Ells C, Kerachian M, et al. Biochemical analysis of patients with mutations in MTHFD1 and a diagnosis of methylenetetrahydrofolate dehydrogenase 1 deficiency. Mol Genet Metab. 2020;130:179–82.

    Article  CAS  Google Scholar 

  • Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci U S A. 1997;94(7):3290–5.

    Article  CAS  Google Scholar 

  • Cario H, Bode H, Debatin KM, Opladen T, Schwarz K. Congenital null mutations of the FOLR1 gene: a progressive neurologic disease and its treatment. Neurology. 2009;73(24):2127–9.

    Article  CAS  Google Scholar 

  • Cario H, Smith DEC, Bloom HJ, Blau N, Bode H, Holzmann K, et al. Dihydrofolate reductase deficiency caused by a homozygous DHFR mutation, leads to congenital megaloblastic anemia and severe neurologic disease due to cerebral folate deficiency. Am J Hum Genet. 2011;88:226–31.

    Article  CAS  Google Scholar 

  • Dill P, Schneider J, Weber P, Trachsel D, Tekin M, Jakobs C, et al. Pyridoxal phosphate-responsive seizures in a patient with cerebral folate deficiency (CFD) and congenital deafness with labyrinthine aplasia, microtia and microdontia (LAMM). Mol Genet Metab. 2011;104:362–8.

    Article  CAS  Google Scholar 

  • Fournier I, Ploye F, Cottet-Emard JM, Brun J, Claustrat B. Folate deficiency alters melatonin secretion in rats. J Nutr. 2002;132(9):2781–4.

    Article  CAS  Google Scholar 

  • Geller J, Kronn D, Jayabose S, Sandoval C. Hereditary folate malabsorption: family report and review of the literature. Medicine (Baltimore). 2002;81(1):51–68.

    Article  CAS  Google Scholar 

  • Ghoshal K, Li X, Datta J, Bai S, Pogribny I, Pogribny M, et al. A folate- and methyl-deficient diet alters the expression of DNA methyltransferases and methyl CpG binding proteins involved in epigenetic gene silencing in livers of F344 rats. J Nutr. 2006;136(6):1522–7.

    Article  CAS  Google Scholar 

  • Goyette P, Sumner JS, Milos R, Duncan AM, Rosenblatt DS, Matthews RG, et al. Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet. 1994;7(2):195–200.

    Article  CAS  Google Scholar 

  • Grapp M, Just IA, Linnankivi T, Wolf P, Lucke T, Hausler M, et al. Molecular characterization of folate receptor 1 mutations delineates cerebral folate transport deficiency. Brain. 2012;135:2022.

    Article  CAS  Google Scholar 

  • Hilton JF, Christensen KE, Watkins D, Raby BA, Renaud Y, de la Luna S, et al. The molecular basis of glutamate formiminotransferase deficiency. Hum Mutat. 2003;22(1):67–73.

    Article  CAS  Google Scholar 

  • Huemer M, Diodato D, Martinelli D, Olivieri G, Blom H, Gleich F, et al. Phenotype, treatment practice and outcome in the cobalamin-dependent remethylation disorders and MTHFR deficiency: data from the E-HOD registry. J Inherit Metab Dis. 2019;42(2):333–52.

    Article  CAS  Google Scholar 

  • Kamen BA, Smith AK. A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv Drug Deliv Rev. 2004;56(8):1085–97.

    Article  CAS  Google Scholar 

  • Keller MD, Ganesh J, Heltzer M, Paessler M, Bergqvist AG, Baluarte HJ, et al. Severe combined immunodeficiency resulting from mutations in MTHFD1. Pediatrics. 2013;131(2):e629–34.

    Article  Google Scholar 

  • Linhart HG, Troen A, Bell GW, Cantu E, Chao WH, Moran E, et al. Folate deficiency induces genomic uracil misincorporation and hypomethylation but does not increase DNA point mutations. Gastroenterology. 2009;136(1):227–35.e3.

    Article  Google Scholar 

  • Matherly LH, Goldman DI. Membrane transport of folates. Vitam Horm. 2003;66:403–56.

    Article  CAS  Google Scholar 

  • Moretti P, Peters SU, Del Gaudio D, Sahoo T, Hyland K, Bottiglieri T, et al. Brief report: autistic symptoms, developmental regression, mental retardation, epilepsy, and dyskinesias in CNS folate deficiency. J Autism Dev Disord. 2008;38(6):1170–7.

    Article  Google Scholar 

  • Perez-Duenas B, Toma C, Ormazabal A, Muchart J, Sanmarti F, Bombau G, et al. Progressive ataxia and myoclonic epilepsy in a patient with a homozygous mutation in the FOLR1 gene. J Inherit Metab Dis. 2010;33(6):795–802.

    Article  Google Scholar 

  • Perez-Duenas B, Ormazabal A, Toma C, Torrico B, Cormand B, Serrano M, et al. Cerebral folate deficiency syndromes in childhood: clinical, analytical, and etiologic aspects. Arch Neurol. 2011;68(5):615–21.

    Article  Google Scholar 

  • Pogribny IP, Karpf AR, James SR, Melnyk S, Han T, Tryndyak VP. Epigenetic alterations in the brains of fisher 344 rats induced by long-term administration of folate/methyl-deficient diet. Brain Res. 2008;1237:25–34.

    Article  CAS  Google Scholar 

  • Prasad AN, Rupar CA, Prasad C. Methylenetetrahydrofolate reductase (MTHFR) deficiency and infantile epilepsy. Brain and Development. 2011;33(9):758–69.

    Article  Google Scholar 

  • Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, et al. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell. 2006;127(5):917–28.

    Article  CAS  Google Scholar 

  • Rodan LH, Qi W, Ducker GS, Demirbas D, Laine R, Yang E, et al. 5,10-methenyltetrahydrofolate synthetase deficiency causes a neurometabolic disorder associated with microcephaly, epilepsy, and cerebral hypomyelination. Mol Genet Metab. 2018;125(1–2):118–26.

    Article  CAS  Google Scholar 

  • Sarret C, Ashkavand Z, Paules E, Dorboz I, Pediaditakis P, Sumner S, et al. Deleterious mutations in ALDH1L2 suggest a novel cause for neuro-ichthyotic syndrome. NPJ Genom Med. 2019;4(1).

    Google Scholar 

  • Schiff M, Benoist JF, Tilea B, Royer N, Giraudier S. Ogier de Baulny H. isolated remethylation disorders: do our treatments benefit patients? J Inherit Metab Dis. 2011;34(1):137–45.

    Article  CAS  Google Scholar 

  • Steinfeld R, Grapp M, Kraetzner R, Dreha-Kulaczewski S, Helms G, Dechent P, et al. Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet. 2009;85(3):354–63.

    Article  CAS  Google Scholar 

  • Strauss KA, Morton DH, Puffenberger EG, Hendrickson C, Robinson DL, Wagner C, et al. Prevention of brain disease from severe 5,10-methylenetetrahydrofolate reductase deficiency. Mol Genet Metab. 2007;91(2):165–75.

    Article  CAS  Google Scholar 

  • Svaton M, Skvarova Kramarzova K, Kanderova V, Mancikova A, Smisek P, Jesina P, et al. A homozygous deletion in the SLC19A1 gene as a cause of folate-dependent recurrent megaloblastic anemia. Blood. 2020;135(26):2427–31.

    Article  Google Scholar 

  • Ucar SK, Koroglu OA, Berk O, Yalaz M, Kultursay N, Blom HJ, et al. Titration of betaine therapy to optimize therapy in an infant with 5,10-methylenetetrahydrofolate reductase deficiency. Eur J Pediatr. 2010;169(2):241–3.

    Article  Google Scholar 

  • Watkins D, Rosenblatt DS. Update and new concepts in vitamin responsive disorders of folate transport and metabolism. J Inherit Metab Dis. 2012;35:665–70.

    Article  CAS  Google Scholar 

  • Watkins D, Schwartzentruber JA, Ganesh J, Orange JS, Kaplan BS, Nunez LD, et al. Novel inborn error of folate metabolism: identification by exome capture and sequencing of mutations in the MTHFD1 gene in a single proband. J Med Genet. 2011;48(9):590–2.

    Article  CAS  Google Scholar 

  • Weitman SD, Weinberg AG, Coney LR, Zurawski VR, Jennings DS, Kamen BA. Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Res. 1992;52(23):6708–11.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Steinfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steinfeld, R., Blau, N. (2022). Disorders of Folate Metabolism and Transport. In: Blau, N., Dionisi Vici, C., Ferreira, C.R., Vianey-Saban, C., van Karnebeek, C.D.M. (eds) Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-67727-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67727-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67726-8

  • Online ISBN: 978-3-030-67727-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics