Skip to main content

Other -omics Approaches and Their Integration for the Diagnosis and Treatment of Inborn Errors of Metabolism

  • Chapter
  • First Online:
Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases

Summary

Here we provide an overview of the different -omics approaches and their application and integration for the purpose of improving diagnosis and treatment of patients with inborn errors of metabolism. Given the molecular diversity of biomarkers, the high-throughput -omics technologies offer an amazing opportunity for holistic investigation and contextual pathophysiologic understanding of disease, as well as their identification and management. Phenomics, genomics, metabolomics, lipidomics, glycomics, proteomics, and transcriptomics are each important to systems medicine, but some are clear more mature than others, reflected in the varying applications as a clinically reimbursed test versus a research tool only. Generation of big data is relatively easy; the challenge lies in the integration and interpretation of these systems biology data and functional characterization and translation of the results into something clinically meaningful for our patients. Partnerships with patients and families and multidisciplinary collaboration between clinicians and researchers are essential for success in the -omics era.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Bakar N, Voermans NC, Marquardt T, Thiel C, Janssen MCH, Hansikova H, et al. Intact transferrin and total plasma glycoprofiling for diagnosis and therapy monitoring in phosphoglucomutase-I deficiency. Transl Res. 2018;199:62–76.

    Google Scholar 

  • Ahn AC, Tewari M, Poon CS, Phillips RS. The limits of reductionism in medicine: could systems biology offer an alternative? PLoS Med. 2006;3(6):e208.

    Google Scholar 

  • Alyass A, Turcotte M, Meyre D. From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genomics. 2015;8:33.

    Google Scholar 

  • Argov Z, Caraco Y, Lau H, Pestronk A, Shieh PB, Skrinar A, et al. Aceneuramic acid extended release administration maintains upper limb muscle strength in a 48-week study of subjects with GNE myopathy: results from a phase 2, randomized, controlled study. J Neuromuscul Dis. 2016;3(1):49–66.

    Google Scholar 

  • Barbosa EA, Fontes NDC, Santos SCL, Lefeber DJ, Bloch C, Brum JM, et al. Relative quantification of plasma N-glycans in type II congenital disorder of glycosylation patients by mass spectrometry. Clin Chim Acta. 2019;492:102–13.

    Google Scholar 

  • Belkadi A, Bolze A, Itan Y, Cobat A, Vincent QB, Antipenko A, et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A. 2015;112(17):5473–8.

    Google Scholar 

  • Benson M. Clinical implications of omics and systems medicine: focus on predictive and individualized treatment. J Intern Med. 2016;279(3):229–40.

    Google Scholar 

  • Bergsma AJ, van der Wal E, Broeders M, van der Ploeg AT, Pim Pijnappel WWM. Alternative splicing in genetic diseases: improved diagnosis and novel treatment options. Int Rev Cell Mol Biol. 2018;335:85–141.

    Google Scholar 

  • Cummings BB, Marshall JL, Tukiainen T, Lek M, Donkervoort S, Foley AR, et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med. 2017;9(386):eaal5209.

    Google Scholar 

  • Davids M, Kane MS, Wolfe LA, Toro C, Tifft CJ, Adams D, et al. Glycomics in rare diseases: from diagnosis to mechanism. Transl Res. 2019;206:5–17.

    Google Scholar 

  • Ferreira CR, van Karnebeek CDM, Vockley J, Blau N. A proposed nosology of inborn errors of metabolism. Genet Med. 2019;21(1):102–6.

    Google Scholar 

  • Foley KE. Model network: Canadian program aims to generate models for rare disease. Nat Med. 2015;21(11):1242–3.

    Google Scholar 

  • Fresard L, Smail C, Ferraro NM, Teran NA, Li X, Smith KS, et al. Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. Nat Med. 2019;25(6):911–9.

    Google Scholar 

  • Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BW, Willemsen MH, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511(7509):344–7.

    Google Scholar 

  • Gonorazky HD, Naumenko S, Ramani AK, Nelakuditi V, Mashouri P, Wang P, et al. Expanding the boundaries of RNA sequencing as a diagnostic tool for rare Mendelian disease. Am J Hum Genet. 2019;104(3):466–83.

    Google Scholar 

  • Heide H, Wittig I. Methods to analyse composition and dynamics of macromolecular complexes. Biochem Soc Trans. 2013;41(5):1235–41.

    Google Scholar 

  • Heide H, Bleier L, Steger M, Ackermann J, Drose S, Schwamb B, et al. Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex. Cell Metab. 2012;16(4):538–49.

    Google Scholar 

  • Herzog K, Pras-Raves ML, Ferdinandusse S, Vervaart MAT, Luyf ACM, van Kampen AHC, et al. Plasma lipidomics as a diagnostic tool for peroxisomal disorders. J Inherit Metab Dis. 2018;41(3):489–98.

    Google Scholar 

  • Hyotylainen T, Oresic M. Systems biology strategies to study lipidomes in health and disease. Prog Lipid Res. 2014;55:43–60.

    Google Scholar 

  • Julkowska D, Austin CP, Cutillo CM, Gancberg D, Hager C, Halftermeyer J, et al. The importance of international collaboration for rare diseases research: a European perspective. Gene Ther. 2017;24(9):562–71.

    Google Scholar 

  • Kremer LS, Bader DM, Mertes C, Kopajtich R, Pichler G, Iuso A, et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat Commun. 2017;8:15824.

    Google Scholar 

  • Kremer LS, Wortmann SB, Prokisch H. “Transcriptomics”: molecular diagnosis of inborn errors of metabolism via RNA-sequencing. J Inherit Metab Dis. 2018;41(3):525–32.

    Google Scholar 

  • Lake NJ, Webb BD, Stroud DA, Richman TR, Ruzzenente B, Compton AG, et al. Biallelic mutations in MRPS34 lead to instability of the small mitoribosomal subunit and Leigh syndrome. Am J Hum Genet. 2017;101(2):239–54.

    Google Scholar 

  • Lee JJY, Wasserman WW, Hoffmann GF, van Karnebeek CDM, Blau N. Knowledge base and mini-expert platform for the diagnosis of inborn errors of metabolism. Genet Med. 2018;20(1):151–8.

    Google Scholar 

  • Lionel AC, Costain G, Monfared N, Walker S, Reuter MS, Hosseini SM, et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med. 2018;20(4):435–43.

    Google Scholar 

  • Maiella S, Olry A, Hanauer M, Lanneau V, Lourghi H, Donadille B, et al. Harmonising phenomics information for a better interoperability in the rare disease field. Eur J Med Genet. 2018;61(11):706–14.

    Google Scholar 

  • Malicdan MCV, Vilboux T, Ben-Zeev B, Guo J, Eliyahu A, Pode-Shakked B, et al. A novel inborn error of the coenzyme Q10 biosynthesis pathway: cerebellar ataxia and static encephalomyopathy due to COQ5 C-methyltransferase deficiency. Hum Mutat. 2018;39(1):69–79.

    Google Scholar 

  • McAlister GC, Nusinow DP, Jedrychowski MP, Wuhr M, Huttlin EL, Erickson BK, et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem. 2014;86(14):7150–8.

    Google Scholar 

  • Perez-Torras S, Mata-Ventosa A, Drogemoller B, Tarailo-Graovac M, Meijer J, Meinsma R, et al. Deficiency of perforin and hCNT1, a novel inborn error of pyrimidine metabolism, associated with a rapidly developing lethal phenotype due to multi-organ failure. Biochim Biophys Acta Mol Basis Dis. 2019;1865(6):1182–91.

    Google Scholar 

  • Posey JE, Harel T, Liu P, Rosenfeld JA, James RA, Coban Akdemir ZH, et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med. 2017;376(1):21–31.

    Google Scholar 

  • Prokisch H. Transcriptomics in rare disease diagnosis. Society for the study of inborn errors of metabolism (SSIEM). 2018. Athens, Greece, 4–7 Sept 2018.

    Google Scholar 

  • Rahman J, Rahman S. The utility of phenomics in diagnosis of inherited metabolic disorders. Clin Med (Lond). 2019;19(1):30–6.

    Google Scholar 

  • Rahman J, Noronha A, Thiele I, Rahman S. Leigh map: a novel computational diagnostic resource for mitochondrial disease. Ann Neurol. 2017;81(1):9–16.

    Google Scholar 

  • Shen JJ, Wortmann SB, de Boer L, Kluijtmans LAJ. The role of clinical response to treatment in determining pathogenicity of genomic variants. Genet Med. 2021;23(3):581–5.

    Google Scholar 

  • Stavropoulos DJ, Merico D, Jobling R, Bowdin S, Monfared N, Thiruvahindrapuram B, et al. Whole genome sequencing expands diagnostic utility and improves clinical management in pediatric medicine. NPJ Genom Med. 2016;1:15012.

    Google Scholar 

  • Stenton SL, Kremer LS, Kopajtich R, Ludwig C, Prokisch H. The diagnosis of inborn errors of metabolism by an integrative “multi-omics” approach: a perspective encompassing genomics, transcriptomics and proteomics. J Inherit Metab Dis. 2020;43(1):25–35.

    Google Scholar 

  • Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016;538(7623):123–6.

    Google Scholar 

  • Tebani A, Afonso C, Marret S, Bekri S. Omics-based strategies in precision medicine: toward a paradigm shift in inborn errors of metabolism investigations. Int J Mol Sci. 2016;17(9):1555.

    Google Scholar 

  • Thompson K, Collier JJ, Glasgow RIC, Robertson FM, Pyle A, Blakely EL, et al. Recent advances in understanding the molecular genetic basis of mitochondrial disease. J Inherit Metab Dis. 2019;43(1):36–50.

    Google Scholar 

  • van Karnebeek CD, Bonafe L, Wen XY, Tarailo-Graovac M, Balzano S, Royer-Bertrand B, et al. NANS-mediated synthesis of sialic acid is required for brain and skeletal development. Nat Genet. 2016;48(7):777–84.

    Google Scholar 

  • van Karnebeek CDM, Wortmann SB, Tarailo-Graovac M, Langeveld M, Ferreira CR, van de Kamp JM, et al. The role of the clinician in the multi-omics era: are you ready? J Inherit Metab Dis. 2018;41(3):571–82.

    Google Scholar 

  • van Kuilenburg ABP, Tarailo-Graovac M, Richmond PA, Drogemoller BI, Pouladi MA, Leen R, et al. Glutaminase deficiency caused by short tandem repeat expansion in GLS. N Engl J Med. 2019;380(15):1433–41.

    Google Scholar 

  • Van Scherpenzeel M, Willems E, Lefeber DJ. Clinical diagnostics and therapy monitoring in the congenital disorders of glycosylation. Glycoconj J. 2016;33(3):345–58.

    Google Scholar 

  • Vaz FM, Pras-Raves M, Bootsma AH, van Kampen AH. Principles and practice of lipidomics. J Inherit Metab Dis. 2015;38(1):41–52.

    Google Scholar 

  • Vaz F, McDermott J, Alders M. Hypomorphic PCYT2 variants disrupt ether(phospho)lipid biosynthesis causing complex hereditary spastic paraplegia with intellectual disability and epilepsy. (Under review). Brain. 2019;142(11):3382–97.

    Google Scholar 

  • Wangler MF, Yamamoto S, Chao HT, Posey JE, Westerfield M, Postlethwait J, et al. Model organisms facilitate rare disease diagnosis and therapeutic research. Genetics. 2017;207(1):9–27.

    Google Scholar 

  • Wen XY, Tarailo-Graovac M, Brand-Arzamendi K, Willems A, Rakic B, Huijben K, et al. Sialic acid catabolism by N-acetylneuraminate pyruvate lyase is essential for muscle function. JCI Insight. 2018;3(24):e122373.

    Google Scholar 

  • Zhang L, Han X, Wang X. Is the clinical lipidomics a potential goldmine? Cell Biol Toxicol. 2018;34(6):421–3.

    Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and families for inspiring us, to our clinical and research colleagues for teaching us and collaborating with us, and finally to Ms E Ferreira (Amsterdam UMC) for her writing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara D. M. van Karnebeek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Karnebeek, C.D.M., Verhoeven-Duif, N. (2022). Other -omics Approaches and Their Integration for the Diagnosis and Treatment of Inborn Errors of Metabolism. In: Blau, N., Dionisi Vici, C., Ferreira, C.R., Vianey-Saban, C., van Karnebeek, C.D.M. (eds) Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-67727-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67727-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67726-8

  • Online ISBN: 978-3-030-67727-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics