Skip to main content

Predicting Future Classifiers for Evolving Non-linear Decision Boundaries

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12457))

Abstract

In streaming data applications, the underlying concept often changes with time which necessitates the update of employed classifiers. Most approaches in the literature utilize the arriving labeled data to continually update the classifier system. However, it is often difficult/expensive to continuously receive the labels for the arriving data. Moreover, in domains such as embedded sensing, resource-aware classifiers that do not update frequently are needed. To tackle these issues, recent works have proposed to predict classifiers at a future time instance by additionally learning the dynamics of changing classifier weights during the initial training phase. This strategy bypasses the need to retrain/relearn the classifiers, and thus the additional labeled data is no longer required. However, the current progress is limited to the prediction of linear classifiers. As a step forward, in this work, we propose a probabilistic model for predicting future non-linear classifiers given time-stamped labeled data. We develop a variational inference based learning algorithm and demonstrate the effectiveness of our approach through experiments using synthetic and real-world datasets.

D.Dhaka—Contributed while working at NEC Corporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.ncdc.noaa.gov/cdo-web/datasets.

  2. 2.

    https://archive.ics.uci.edu/ml/datasets/Online+News+Popularity.

References

  1. Abdallah, Z.S., Gaber, M.M., Srinivasan, B., Krishnaswamy, S.: Adaptive mobile activity recognition system with evolving data streams. Neurocomputing 150, 304–317 (2015)

    Article  Google Scholar 

  2. Alippi, C., Liu, D., Zhao, D., Bu, L.: Detecting and reacting to changes in sensing units: the active classifier case. IEEE Trans. Syst. Man Cybern. Syst. 44(3), 353–362 (2013)

    Article  Google Scholar 

  3. Angelov, P., Zhou, X.: Evolving fuzzy systems from data streams in real-time. In: 2006 International Symposium on Evolving Fuzzy Systems, pp. 29–35. IEEE (2006)

    Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Boston (2006). https://doi.org/10.1007/978-1-4615-7566-5

    Book  MATH  Google Scholar 

  5. Brzezinski, D., Stefanowski, J.: Reacting to different types of concept drift: the accuracy updated ensemble algorithm. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 81–94 (2014)

    Article  Google Scholar 

  6. Crammer, K., Even-Dar, E., Mansour, Y., Vaughan, J.W.: Regret minimization with concept drift. In: Proceedings of the 23rd Annual Conference on Learning Theory (COLT) (2010)

    Google Scholar 

  7. Ditzler, G.: Incremental learning of concept drift from imbalanced data (2011)

    Google Scholar 

  8. Ferguson, T.S.: A bayesian analysis of some nonparametric problems. The annals of statistics pp. 209–230 (1973)

    Google Scholar 

  9. Fernandes, K., Vinagre, P., Cortez, P.: A proactive intelligent decision support system for predicting the popularity of online news. In: Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds.) EPIA 2015. LNCS (LNAI), vol. 9273, pp. 535–546. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23485-4_53

    Chapter  Google Scholar 

  10. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)

    Article  Google Scholar 

  11. Griffiths, T.L., Jordan, M.I., Tenenbaum, J.B., Blei, D.M.: Hierarchical topic models and the nested Chinese restaurant process. In: Advances in Neural Information Processing Systems, pp. 17–24 (2004)

    Google Scholar 

  12. Hannah, L.A., Blei, D.M., Powell, W.B.: Dirichlet process mixtures of generalized linear models. J. Mach. Learn. Res. 12, 1923–1953 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Haque, A., Khan, L., Baron, M.: Sand: semi-supervised adaptive novel class detection and classification over data stream. In: THIRTIETH AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  14. Haque, A., Khan, L., Baron, M., Thuraisingham, B., Aggarwal, C.: Efficient handling of concept drift and concept evolution over stream data. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 481–492. IEEE (2016)

    Google Scholar 

  15. Hofer, V.: Adapting a classification rule to local and global shift when only unlabelled data are available. Eur. J. Oper. Res. 243(1), 177–189 (2015)

    Article  MathSciNet  Google Scholar 

  16. Jaakkola, T.S., Jordan, M.I.: Bayesian parameter estimation via variational methods. Stat. Comput. 10(1), 25–37 (2000)

    Article  Google Scholar 

  17. Klinkenberg, R.: Learning drifting concepts: example selection vs. example weighting. Intell. Data Anal. 8(3), 281–300 (2004)

    Google Scholar 

  18. Kolter, J.Z., Maloof, M.A.: Using additive expert ensembles to cope with concept drift. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 449–456. ACM (2005)

    Google Scholar 

  19. Koychev, I.: Gradual forgetting for adaptation to concept drift. In: Proceedings of ECAI 2000 Workshop on Current Issues in Spatio-Temporal ... (2000)

    Google Scholar 

  20. Kumagai, A., Iwata, T.: Learning future classifiers without additional data. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  21. Kumagai, A., Iwata, T.: Learning non-linear dynamics of decision boundaries for maintaining classification performance. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  22. Kumagai, A., Iwata, T.: Learning dynamics of decision boundaries without additional labeled data. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1627–1636. ACM (2018)

    Google Scholar 

  23. Lee, K.H., Verma, N.: A low-power processor with configurable embedded machine-learning accelerators for high-order and adaptive analysis of medical-sensor signals. IEEE J. Solid-State Circuits 48(7), 1625–1637 (2013)

    Article  Google Scholar 

  24. Lindstrom, P., Delany, S.J., Mac Namee, B.: Handling concept drift in a text data stream constrained by high labelling cost. In: Twenty-Third International FLAIRS Conference (2010)

    Google Scholar 

  25. Lorena, A.C., Garcia, L.P., Lehmann, J., Souto, M.C., Ho, T.K.: How complex is your classification problem? A survey on measuring classification complexity. ACM Comput. Surv. (CSUR) 52(5), 1–34 (2019)

    Article  Google Scholar 

  26. Lütkepohl, H.: Vector Autoregressive Models. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-04898-2_609

    Book  MATH  Google Scholar 

  27. Martínez-Rego, D., Pérez-Sánchez, B., Fontenla-Romero, O., Alonso-Betanzos, A.: A robust incremental learning method for non-stationary environments. Neurocomputing 74(11), 1800–1808 (2011)

    Article  Google Scholar 

  28. Sethuraman, J.: A constructive definition of Dirichlet priors. Statistica Sinica, 639–650 (1994)

    Google Scholar 

  29. Shahbaba, B., Neal, R.: Nonlinear models using Dirichlet process mixtures. J. Mach. Learn. Res. 10, 1829–1850 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Škrjanc, I., Iglesias, J.A., Sanchis, A., Leite, D., Lughofer, E., Gomide, F.: Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: a survey. Inf. Sci. 490, 344–368 (2019)

    Article  Google Scholar 

  31. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Sharing clusters among related groups: Hierarchical Dirichlet processes. In: Advances in Neural Information Processing Systems, pp. 1385–1392 (2005)

    Google Scholar 

  32. Wang, C., Paisley, J., Blei, D.: Online variational inference for the hierarchical Dirichlet process. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 752–760 (2011)

    Google Scholar 

  33. Wang, J., Zhao, P., Hoi, S.C.H.: Exact soft confidence-weighted learning. In: Proceedings of the 29th International Conference on Machine Learning, pp. 121–128 (2012)

    Google Scholar 

  34. Yang, X., Dinh, A., Chen, L.: Implementation of a wearerable real-time system for physical activity recognition based on Naive Bayes classifier. In: 2010 International Conference on Bioinformatics and Biomedical Technology, pp. 101–105. IEEE (2010)

    Google Scholar 

  35. Yuan, C., Neubauer, C.: Variational mixture of gaussian process experts. In: Advances in Neural Information Processing Systems, pp. 1897–1904 (2009)

    Google Scholar 

  36. Zhu, X., Zhang, P., Lin, X., Shi, Y.: Active learning from stream data using optimal weight classifier ensemble. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 40(6), 1607–1621 (2010)

    Google Scholar 

  37. Žliobaitė, I., Bifet, A., Pfahringer, B., Holmes, G.: Active learning with drifting streaming data. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 27–39 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanishka Khandelwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khandelwal, K., Dhaka, D., Barsopia, V. (2021). Predicting Future Classifiers for Evolving Non-linear Decision Boundaries. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12457. Springer, Cham. https://doi.org/10.1007/978-3-030-67658-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67658-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67657-5

  • Online ISBN: 978-3-030-67658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics