Skip to main content

Bubbles Dynamics in Liquid

  • Chapter
  • First Online:
Non-equilibrium Evaporation and Condensation Processes

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 418 Accesses

Abstract

The derivation of the generalized Rayleigh equation that describes the dynamics of a spherical gas bubble in a tube filled with an ideal liquid is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HN:

Homogeneous nucleation

MSBD:

Maximum stable bubble diameter

\(d_{b}\) :

Bubble diameter

\(l\) :

Length

\(p\) :

Pressure

\(\Delta p\) :

Pressure drop

\(r\) :

Radial coordinate

\({\text{Re}}\) :

Reynolds number

\(R\) :

Bubble radius

\(T\) :

Temperature

\(t\) :

Time

\(U, u\) :

Velocity

\({\text{We}}\) :

Weber number

\(z\) :

Axial coordinate

\(\upsilon\) :

Kolmogorov velocity microscale

\(\varepsilon\) :

Dissipation

\(\xi\) :

Darcy friction factor

\(\mu\) :

Dynamic viscosity

\(\nu\) :

Kinematic viscosity

\(\eta\) :

Kolmogorov length microscale

\(\rho\) :

Density

\(\sigma\) :

Surface tension

\(\infty\) :

State at infinity

\(*\) :

Critical

References

  1. Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag 34:94–98

    Article  Google Scholar 

  2. Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Ann Rev Fluid Mech 9:145–185

    Article  Google Scholar 

  3. d’Agostino L, Salvetti MV (2008) Fluid dynamics of cavitation and cavitating turbopumps. Springer, Vien, New York

    Google Scholar 

  4. Zudin YB (1992) Analog of the Rayleigh equation for the bubble dynamics in a tube. Inzh-Fiz Zh 63(1):28–31

    Google Scholar 

  5. Zudin YB (1995) Calculation of the rise velocity of large gas bubbles. Inzh-Fiz Zh 68(1):13–17

    MathSciNet  Google Scholar 

  6. Zudin YB (1998) Calculation of the drift velocity in bubbly flow in a vertical tube. Inzh-Fiz Zh 71(6):996–999

    Google Scholar 

  7. Freeden W, Gutting M (2013) Special functions of mathematical (geo-)physics. Appl Numer Harmonic Anal. Springer, Basel

    Google Scholar 

  8. Klaseboer E, Khoo BC (2006) A modified Rayleigh-Plesset model for a nonspherically symmetric oscillating bubble with applications to boundary integral methods. Eng Anal Bound Elem 30(1):59–71

    Article  Google Scholar 

  9. Zudin YB, Isakov NS, Zenin VV (2014) Generalized Rayleigh equation for the bubble dynamics in a tube. J Eng Phys Thermophys 87(6):1487–1493

    Article  Google Scholar 

  10. Scripov VP (1974) Metastable liquids. John Wiley & Sons, New York

    Google Scholar 

  11. Debenedetti PG (1996) Metastable liquids: concepts and principles. Princeton University Press, Princeton, New York

    Google Scholar 

  12. Perrot P (1998) A to Z of thermodynamics. Oxford University Press

    Google Scholar 

  13. Kashchiev D (2000) Nucleation: basic theory with applications. Butterworth-Heinemann, Oxford

    Google Scholar 

  14. Horst JH, Kashchiev D (2008) Rate of two-dimensional nucleation: verifying classical and atomistic theories by Monte Carlo simulation. J Phys Chem B 112(29):8614–8618

    Article  Google Scholar 

  15. Sekine M, Yasuoka K, Kinjo T, Matsumoto M (2008) Liquid–vapor nucleation simulation of Lennard-Jones fluid by molecular dynamics method. Fluid Dyn Res 40:597–605

    Article  Google Scholar 

  16. Chao L, Xiaobo W, Hualing Z (2010) Molecular dynamics simulation of bubble nucleation in superheated liquid. In: Proceedings of the 14th international heat transfer conference IHTC14, August 7–13, Washington. IHTC14-22129

    Google Scholar 

  17. Griffiths DJ (2005) Introduction to quantum mechanics, 2nd edn. Prentice Hall International

    Google Scholar 

  18. Guénault AM (2003) Basic superfluids. Taylor & Francis, London

    MATH  Google Scholar 

  19. Cumberbatch E, Uno S, Abebe H (2006) Nano-scale MOSFET device modelling with quantum mechanical effects. Eur J Appl Math 465–489 http://journals.cambridge.org/action/displayJournal?jid=EJM17

  20. Keith AC, Lazzati D (2011) Thermal fluctuations and nanoscale effects in the nucleation of carbonaceous dust grains. Mon Not R Astron Soc 410(1):685–693

    Article  Google Scholar 

  21. Zudin YB (1998) Calculation of the surface density of nucleation sites in nucleate boiling of a liquid. J Eng Phys Thermophys 71:178–183

    Article  Google Scholar 

  22. Zudin YB (1998) The Distance between nucleate boiling sites. High Temp 36:662–663

    Google Scholar 

  23. Lesieur M (1997) Turbulence in fluids. Publ, Kluwer Acad

    Book  Google Scholar 

  24. Truesdell C (2018) The kinematics of vorticity. Courier Dover Publications

    Google Scholar 

  25. Bharucha-Reid AT (1960) Elements of the theory of Markov processes and their applications. McGraw-Hill, New York

    MATH  Google Scholar 

  26. Prigogine I, Stengers I (1984) Order out of Chaos. Bantam Books, University of Michigan

    Google Scholar 

  27. Prigogine I (1961) Introduction to thermodynamics of irreversible processes, 2nd edn. Interscience, New York

    MATH  Google Scholar 

  28. Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press

    Google Scholar 

  29. Taylor G I (1935) Statistical theory of turbulence. In: Proceedings of the royal society of London. Series A, mathematical and physical sciences, vol 151, no 873, pp 421–444

    Google Scholar 

  30. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. In: Proceedings of the USSR academy of sciences (in Russian), vol 30, pp 299–303

    Google Scholar 

  31. Moulden TH (1977) Handbook of turbulence. fundamental and applications. In: Frost W, Moulden TH (eds) Plenum Press, New York

    Google Scholar 

  32. Spalart PR, Allmaras SR (1992) A one–equation turbulence model for aerodynamic flows. AIAA Paper 92–0439, Jan 1992

    Google Scholar 

  33. Menter FR (1993) Zonal two-equation k-x turbulence models for aerodynamic flows. AIAA Paper 93–2306, Jun 1993

    Google Scholar 

  34. Kolmogorov AN (1949) On the disintegration of drops in turbulent flow. Dokl Akad Nauk 66:825–828

    Google Scholar 

  35. Hinze JO (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J 1(3):289–295

    Article  Google Scholar 

  36. Batchelor GK (1951) Pressure fluctuations in isotropic turbulence. Proc Cambridge Phil Soc 47:359–374

    Article  Google Scholar 

  37. Qian D, McLaughlin JB, Sankaranarayanan K, Sundaresan S, Kontomaris K (2006) Simulation of bubble breakup dynamics in homogeneous turbulence. Chem Eng Commun 193:1038–1063

    Article  Google Scholar 

  38. Sankaranarayanan K, Shan X, Kevrekidis IG, Sundaresan S (1999) Bubble flow simulations with the lattice Boltzmann method. Chem Eng Sci 54:4817–4823

    Article  Google Scholar 

  39. Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall

    Google Scholar 

  40. Baldyga J, Bourne JR (1995) Interpretation of turbulent mixing using fractals and multifractals. Chem Eng Sci 50:381–400

    Article  Google Scholar 

  41. Shinnar R (1961) On the behaviour of liquid dispersions in mixing vessels. J Fluid Mech 10:259–275

    Article  Google Scholar 

  42. Hesketh RP, Russell TWF, Etchells AW (1987) Bubble size in horizontal pipelines. AIChE J 33(4):663–667

    Article  Google Scholar 

  43. Sevik M, Park SH (1973) The splitting of drops and bubbles by turbulent fluid flow. J Fluids Eng 95:53–60

    Article  Google Scholar 

  44. Risso F, Fabre J (1998) Oscillations and breakup of a bubble immersed in a turbulent field. J Fluid Mech 372:323–355

    Article  Google Scholar 

  45. Karabelas AJ (1978) Droplet size spectra generated in turbulent pipe flow of dilute liquid/liquid dispersions. A.I.C.E.J 24(2):170–180

    Google Scholar 

  46. Evans GM, Jameson GJ, Atkinson BW (1992) Prediction of the bubble size generated by a plunging liquid jet. Chem Eng Sci 47(13–14):3265–3272

    Article  Google Scholar 

  47. Andreussi P, Paglianti A, Silva FS (1999) Dispersed bubble flow in horizontal pipes. Chem Eng Sci 54(8):1101–1107

    Article  Google Scholar 

  48. Schlichting H, Gersten K (1997) Grenzschicht-Theorie. Springer, Berlin Heidelberg, New York

    Book  Google Scholar 

  49. Hibiki T, Ishii M, Xiao Z (2001) Axial interfacial area transport of vertical bubbly flows. Int J Heat Mass Trans 44:1869–1888

    Article  Google Scholar 

  50. Abdulmouti H (2014) Bubbly two-phase flow: Part I—characteristics, structures, behaviors and flow patterns. Am J Fluid Dyn 4(4):194–240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri B. Zudin .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zudin, Y.B. (2021). Bubbles Dynamics in Liquid. In: Non-equilibrium Evaporation and Condensation Processes. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-67553-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67553-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67552-3

  • Online ISBN: 978-3-030-67553-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics