Skip to main content

Dental Resin-Based Materials with Antibacterial Properties: Contact Inhibition and Controlled Release

  • Chapter
  • First Online:
Oral Biofilms and Modern Dental Materials

Abstract

The basic mechanical, physical, esthetic, and bonding properties of dental resin-based materials have greatly improved with technological developments, and the current materials used for restorative, prosthetic, and preventive treatments show excellent clinical performance. The target of their continued development is therefore shifting towards bioactive functionality to prevent primary/secondary diseases or promote tissue regeneration. Among the several bioactive properties proposed to further enhance dental materials, antibacterial effects that contribute to controlling bacterial infection are one of the most popular. Two approaches are available for conferring antibacterial activity to dental resin-based materials. One is immobilization of antimicrobial components in/on the materials that demonstrate the so-called contact inhibition—inhibition of bacteria that come into contact with the surfaces without any active components being released. Such technology involves utilization of a polymerizable bactericide such as quaternary ammonium compound (QAC)-based resin monomers or QAC-functionalized nanoparticles. In the other approach, the ability to liberate antibacterial components through controlled release is introduced using a carrier, e.g., nonbiodegradable polymer particles loaded with antimicrobials, silver nanoparticles, and ion-releasing glass fillers. In this chapter, two different approaches to providing dental resins with antibacterial properties are summarized. In addition, the future perspectives for each material are addressed based on the continued development of each approach. Both technologies for achieving antibacterial materials described here have great potential to contribute to successful dental treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imazato S, Torii M, Tsuchitani Y, et al. Incorporation of bacterial inhibitor into resin composite. J Dent Res. 1994;73:1437–43.

    Article  PubMed  Google Scholar 

  2. Imazato S, Ma S, Chen JH, et al. Therapeutic polymers for dental adhesives: loading resins with bio-active components. Dent Mater. 2014;30:97–104.

    Article  PubMed  Google Scholar 

  3. Jiao Y, Niu L-N, Ma S, et al. Quaternary ammonium-based biomedical materials: state-of-the-art, toxicological aspects and antimicrobial resistance. Prog Polym Sci. 2017;71:53–90.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Beyth N, Yudovin-Farber I, Perez-Davidi M, et al. Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proc Natl Acad Sci. 2010;107:22038–43.

    Article  PubMed  Google Scholar 

  5. Zaltsman N, Ionescu AC, Weiss EI, et al. Surface-modified nanoparticles as anti-biofilm filler for dental polymers. PLoS One. 2017;12:1–18.

    Article  Google Scholar 

  6. Imazato S, Kohno T, Tsuboi R, et al. Cutting-edge filler technologies to release bio-active components for restorative and preventive dentistry. Dent Mater J. 2020;39:69–79.

    Google Scholar 

  7. Imazato S, Kaneko T, Takahashi Y, et al. In vivo antibacterial effects of dentin primer incorporating MDPB. Oper Dent. 2004;29:369–75.

    PubMed  Google Scholar 

  8. Brambilla E, Ionescu A, Fadini L, et al. Influence of MDPB-containing primer on Streptococcus mutans biofilm formation in simulated class I restorations. J Adhes Dent. 2013;15:431–8.

    PubMed  Google Scholar 

  9. Imazato S, Ebi N, Takahashi Y, et al. Antibacterial activity of bactericide-immobilized filler for resin-based restoratives. Biomaterials. 2003;24:3605–9.

    Article  PubMed  Google Scholar 

  10. Kitagawa R, Kitagawa H, Izutani N, et al. Development of an antibacterial root canal filling system containing MDPB. J Dent Res. 2014;93:1277–82.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hirose N, Kitagawa R, Kitagawa H, et al. Development of a cavity disinfectant containing antibacterial monomer MDPB. J Dent Res. 2016;95:1487–93.

    Article  PubMed  Google Scholar 

  12. Huang L, Sun X, Xiao YH, et al. Antibacterial effect of a resin incorporating a novel polymerizable quaternary ammonium salt MAE-DB against Streptococcus mutans. J Biomed Mater Res B Appl Biomater. 2012;100:1353–8.

    Article  PubMed  Google Scholar 

  13. Antonucci JM, Zeiger DN, Tang K, et al. Synthesis and characterization of dimethacrylates containing quaternary ammonium functionalities for dental applications. Dent Mater. 2012;28:219–28.

    Article  PubMed  Google Scholar 

  14. Li F, Weir MD, Xu HH. Effects of quaternary ammonium chain length on antibacterial bonding agents. J Dent Res. 2013;92:932–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Farah S, Aviv O, Laout N, et al. Quaternary ammoniumpolyethylenimine nanoparticles for treating bacterial contaminated water. Colloids Surf B. 2015;128:614–9.

    Article  Google Scholar 

  16. Yudovin-Farber I, Beyth N, Nyska A, et al. Surface characterization and biocompatibility of restorative resin containing nanoparticles. Biomacromolecules. 2008;9:3044–50.

    Article  PubMed  Google Scholar 

  17. Shvero DK, Davidi MP, Weiss EI, et al. Antibacterial effect of polyethyleneimine nanoparticles incorporated in provisional cements against Streptococcus mutans. J Biomed Mater Res B Appl Biomater. 2010;94:367–71.

    PubMed  Google Scholar 

  18. Shvero DK, Abramovitz I, Zaltsman N, et al. Towards antibacterial endodontic sealers using quaternary ammonium nanoparticles. Int Endod J. 2013;46:747–54.

    Article  Google Scholar 

  19. Imazato S, Kitagawa H, Tsuboi R, et al. Non-biodegradable polymer particles for drug delivery: a new technology for “bio-active” restorative materials. Dent Mater J. 2017;36:524–32.

    Article  PubMed  Google Scholar 

  20. Kitagawa H, Takeda K, Kitagawa R, et al. Development of sustained antimicrobial-release systems using poly(2-hydroxyethyl methacrylate)/trimethylolpropane trimethacrylate hydrogels. Acta Biomater. 2014;10:4285–95.

    Article  PubMed  Google Scholar 

  21. Cheng Y-J, Zeiger DN, Howarter JA, et al. In situ formation of silver nanoparticles in photocrosslinking polymers. J Biomed Mater Res B Appl Biomater. 2011;97B:124–31.

    Article  Google Scholar 

  22. Zhang K, Li F, Imazato S, et al. Dual antibacterial agents of nano-silver and 12-methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries. J Biomed Mater Res B Appl Biomater. 2013;101B:929–38.

    Article  Google Scholar 

  23. Khvostenko D, Hilton TJ, Ferracane JL, et al. Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dent Mater. 2016;32:73–81.

    Article  PubMed  Google Scholar 

  24. Davis HB, Gwinner F, Mitchell JC, et al. Ion release from, and fluoride recharge of a composite with a fluoride-containing bioactive glass. Dent Mater. 2014;30:1187–94.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kitagawa H, Miki-Oka S, Mayanagi G, et al. Inhibitory effect of resin composite containing S-PRG filler on Streptococcus mutans glucose metabolism. J Dent. 2018;70:92–6.

    Article  PubMed  Google Scholar 

  26. Nomura R, Morita Y, Matayoshi S, et al. Inhibitory effect of surface pre-reacted glass-ionomer (S-PRG) eluate against adhesion and colonization by Streptococcus mutans. Sci Rep. 2018;8:5056.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ma S, Imazato S, Chen J-H, et al. Effects of a coating resin containing S-PRG filler to prevent demineralization of root surfaces. Dent Mater J. 2012;31:909–15.

    Article  PubMed  Google Scholar 

  28. Iwamatsu-Kobayashi Y, Abe S, Fujieda Y, et al. Metal ions from S-PRG filler have the potential to prevent periodontal disease. Clin Exp Dent Res. 2017;3:126–33.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yoneda M, Suzuki N, Masuo Y, et al. Effect of S-PRG eluate on biofilm formation and enzyme activity of oral bacteria. Int J Dent. 2012;2012:1–6.

    Article  Google Scholar 

  30. Liu Y, Kohno T, Tsuboi R, et al. Acidity-induced release of zinc ion from BioUnion fillerTM and its inhibitory effects against Streptococcus mutans. Dent Mater J. 2020;39:547–53.

    Google Scholar 

  31. Kitagawa H, Izutani N, Kitagawa R, et al. Evolution of resistance to cationic biocides in Streptococcus mutans and Enterococcus faecalis. J Dent. 2016;47:18–22.

    Article  PubMed  Google Scholar 

  32. Wang S, Wang H, Ren B, et al. Drug resistance of oral bacteria to new antibacterial dental monomer dimethylaminohexadecyl methacrylate. Sci Rep. 2018;8:5509.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Uysal T, Amasyali M, Ozcan S, et al. Effect of antibacterial monomer-containing adhesive on enamel demineralization around orthodontic brackets: an in-vivo study. Am J Orthod Dentofac Orthop. 2011;139:650–6.

    Article  Google Scholar 

  34. Pinto CF, Berger SB, Cavalli V, et al. In situ antimicrobial activity and inhibition of secondary caries of self-etching adhesives containing an antibacterial agent and/or fluoride. Am J Dent. 2015;28:167–73.

    PubMed  Google Scholar 

  35. Saku S, Kotake H, Scougall-vilchis RJ, et al. Antibacterial activity of composite resin with glass-ionomer filler particles. Dent Mater J. 2010;29:193–8.

    Article  PubMed  Google Scholar 

  36. Zhang K, Zhang K, Xie X, et al. Nanostructured polymeric materials with protein-repellent and anti-caries properties for dental applications. Nanomaterials. 2018;8:E393.

    Article  PubMed  Google Scholar 

  37. Thongthai P, Kitagawa H, Kitagawa R, et al. Development of novel surface coating composed of MDPB and MPC with dual functionality of antibacterial activity and protein repellency. J Biomed Mater Res B Appl Biomater. 2020;108:3241–9.

    Google Scholar 

  38. Müller R, Eidt A, Hiller KA, et al. Influences of protein films on antibacterial or bacteria-repellent surface coatings in a model system using silicon wafers. Biomaterials. 2009;30:4921–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Dr. Hockin H.K. Xu for providing Fig. 10.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Imazato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Imazato, S., Kitagawa, H. (2021). Dental Resin-Based Materials with Antibacterial Properties: Contact Inhibition and Controlled Release. In: Ionescu, A.C., Hahnel, S. (eds) Oral Biofilms and Modern Dental Materials . Springer, Cham. https://doi.org/10.1007/978-3-030-67388-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67388-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67387-1

  • Online ISBN: 978-3-030-67388-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics