Skip to main content

Basis Sets for Heavy Atoms

  • Chapter
  • First Online:
Basis Sets in Computational Chemistry

Abstract

There has been an increasing interest in the understanding of the chemistry of heavy atoms such as the transition d-metal, lanthanides, and actinide elements because of their potential application in science. In this context, the geometries, electronics structures, spectroscopic data (such as NMR parameters, IR and Raman vibrational modes), and the kinetics and thermodynamics of several processes are important molecular descriptors to be evaluated theoretically and assist the experimentalists in the search for new molecular complexes. Moreover, when heavy atoms are present in the compounds, there is an intrinsic difficulty in the theoretical prediction of molecular properties with satisfactory accuracy. This is mainly due to the incompleteness of the basis set used for these heavy atoms and, in most cases, the relativistic effects. Thus, this chapter addresses the basis sets for heavy elements with a focus on the understanding of transition d-metal with the potential biological application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dedieu A (2000) Chem Rev 100:543–600. https://doi.org/10.1021/cr980407a

  2. Ma DL, He HZ, Leung KH, Chan DSH, Leung CH (2013) Angew Chemie - Int Ed 52:7666–7682. https://doi.org/10.1002/anie.201208414

  3. Schwietert CW, McCue JP (1999) Coord Chem Rev 184:67–89. https://doi.org/10.1016/S0010-8545(98)00205-7

  4. Trudu F, Amato F, Vaňhara P, Pivetta T, Peña-Méndez EM, Havel J (2015) J Appl Biomed 13:79–103. https://doi.org/10.1016/j.jab.2015.03.003

  5. Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA (2015) Coord Chem Rev 284:329–350. https://doi.org/10.1016/j.ccr.2014.08.002

  6. Barry NPE, Sadler PJ (2013) Chem Commun 49:5106. https://doi.org/10.1039/c3cc41143e

  7. Wang X, Chang H, Xie J, Zhao B, Liu B, Xu S, Pei W, Ren N, Huang L, Huang W (2014) Coord Chem Rev 273–274:201–212. https://doi.org/10.1016/j.ccr.2014.02.001

  8. Ma Y, Wang Y (2010) Coord Chem Rev 254:972–990. https://doi.org/10.1016/j.ccr.2010.02.013

  9. Bünzli JCG (2015) Coord Chem Rev 293–294:19–47. https://doi.org/10.1016/j.ccr.2014.10.013

  10. Armelao L, Quici S, Barigelletti F, Accorsi G, Bottaro G, Cavazzini M, Tondello E (2010) Coord Chem Rev 254:487–505. https://doi.org/10.1016/j.ccr.2009.07.025

  11. de Sá G, Malta O, de Mello DC, Simas A, Longo R, Santa-Cruz P, da Silva E (2000) Coord Chem Rev 196:165–195. https://doi.org/10.1016/S0010-

  12. Jones MB, Gaunt AJ (2013) Chem Rev 113:1137–1198. https://doi.org/10.1021/cr300198m

  13. Kaltsoyannis N (2003) Chem Soc Rev 32:9–16. https://doi.org/10.1039/b204253n

  14. Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Nature 222:385–386. https://doi.org/10.1038/222385a0

  15. Wai-Yin Sun R, Ma D-L, Wong EL-M, Che C-M (2007) Dalt Trans 4884–4892. https://doi.org/10.1039/b705079h.

  16. Ronconi L, Sadler PJ (2007) Coord Chem Rev 251:1633–1648. https://doi.org/10.1016/j.ccr.2006.11.017

  17. Mjos KD, Orvig C (2014) Chem Rev 114:4540–4563. https://doi.org/10.1021/cr400460s

  18. Van RSH, Sadler PJ (2009) Drug Discovery Today 14:1089–1097. https://doi.org/10.1016/j.drudis.2009.09.003

  19. Barry NPE, Sadler PJ (2014) Pure Appl Chem 86:1897–1910. https://doi.org/10.1515/pac-2014-0504

  20. Reichert DE, Lewis JS, Anderson CJ (1999) Coord Chem Rev 184:3–66. https://doi.org/10.1016/S0010-8545(98)00207-0

  21. Thompson KH, Orvig C (2003) Science 300:936–939. https://doi.org/10.1126/science.1083004

  22. Helgaker T, Jorgensen P, Olsen J (2000) In Molecular Eletronic-Structure Theory. Wiley, England

    Google Scholar 

  23. Levine IN (2009) In Quantum Chemistry, 6th edn. Pearson, United States of America

    Google Scholar 

  24. Davidson ER, Feller D (1986) Chem Rev 86:681–696. https://doi.org/10.1021/cr00074a002

  25. Jensen F (2007) In Introduction to Computational Chemistry, 2nd edn. Wiley, England

    Google Scholar 

  26. Boys SF (1950) Proc R Soc A Math Phys. Eng Sci 200:542–554. https://doi.org/10.1098/rspa.1950.0036

  27. Cramer CJ (2004) In Essentials of Computational Chemistry - Theories and Models, 2nd edn. Wiley, England

    Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) In Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  29. Neese F (2018) WIREs Comput Mol Sci 8:e1327. https://doi.org/10.1002/wcms.1327

  30. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) Comput Phys Commun 181:1477–1489. https://doi.org/10.1016/j.cpc.2010.04.018

  31. Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Theor Chem Accounts 99:391–403. https://doi.org/10.1007/s002140050353

  32. te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967. https://doi.org/10.1002/jcc.1056

  33. Baerends EJ, Ziegler T, Atkins AJ, Autschbach J, Bashford D, Baseggio O, Bérces A, Bickelhaupt FM, Bo C, Boerritger PM, Cavallo L, Daul C, Chong DP, Chulhai D V, Deng L, Dickson RM, Dieterich JM, Ellis DE, van Faassen M, Ghysels A, Giammona A, van Gisbergen SJA, Goez A, Götz AW, Gusarov S, Harris FE, van den Hoek P, Hu Z, Jacob CR, Jacobsen H, Jensen L, Joubert L, Kaminski JW, van Kessel G, König C, Kootstra F, Kovalenko A, Krykunov M, van Lenthe E, McCormack DA, Michalak A, Mitoraj M, Morton SM, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Pavanello M, Peeples CA, Philipsen PHT, Post D, Pye CC, Ramanantoanina H, Ramos P, Ravenek W, Rodríguez JI, Ros P, Rüger R, Schipper PRT, Schlüns D, van Schoot H, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Solà M, M. S, Swart M, Swerhone D, te Velde G, Tognetti V, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL (2019) In ADF 2019.3, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, https://www.scm.com.

  34. de Castro EVR, Jorge FE (1998) J Chem Phys 108:5225–5229. https://doi.org/10.1063/1.475959

  35. Feller D (1996) J Comput Chem 17:1571–1586. https://doi.org/10.1002/(SICI)1096-987X(199610)17:13%3c1571::AID-JCC9%3e3.0.CO;2-P

    Google Scholar 

  36. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045–1052. https://doi.org/10.1021/ci600510j

  37. Pritchard BP, Altarawy D, Didier B, Gibson TD, Windus TL (2019) J Chem Inf Model 59:4814–4820. https://doi.org/10.1021/acs.jcim.9b00725

  38. Pyykko P, Desclaux JP (1979) Acc Chem Res 12:276–281. https://doi.org/10.1021/ar50140a002

  39. Pitzer KS (1979) Acc Chem Res 12:271–276. https://doi.org/10.1021/ar50140a001

  40. Thayer JS (2010) Relativistic Effects and the Chemistry of the Heavier Main Group Elements. In Relativistic Methods for Chemists, Springer, The Netherlands

    Google Scholar 

  41. Pyykko P (1988) Chem Rev 88:563–594. https://doi.org/10.1021/cr00085a006

  42. Pyykkö P (2012) Annu Rev Phys Chem 63:45–64. https://doi.org/10.1146/annurev-physchem-032511-143755

  43. Rose SJ, Grant IP, Pyper NC (1978) J Phys B at Mol Phys 11:1171–1176. https://doi.org/10.1088/0022-3700/11/7/016

  44. Jansen G, Hess BA (1989) Phys Rev a 39:6016–6017. https://doi.org/10.1103/PhysRevA.39.6016

  45. Hess BA (1986) Phys Rev a 33:3742–3748. https://doi.org/10.1103/PhysRevA.33.3742

  46. Hess BA (1985) Phys Rev a 32:756–763. https://doi.org/10.1103/PhysRevA.32.756

  47. Douglas M, Kroll NM (1974) Ann Phys 82:89–155. https://doi.org/10.1016/0003-4916(74)90333-9

  48. Wolf A, Reiher M, Hess BA (2002) J Chem Phys 117:9215–9226. https://doi.org/10.1063/1.1515314

  49. Van Lenthe E, Snijders JG, Baerends EJ (1996) J. Chem. Phys. 105:6505–6516. https://doi.org/10.1063/1.472460

  50. Van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783–9792. https://doi.org/10.1063/1.467943

  51. Van Wüllen C (1998) J Chem Phys 109:392–399. https://doi.org/10.1063/1.476576

  52. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310. https://doi.org/10.1063/1.448975

  53. Wadt WR, Hay PJ, Wadt WA, Hay PJ (1997) J Chem Phys 284:284–298. https://doi.org/10.1063/1.448800

  54. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283. https://doi.org/10.1063/1.448799

  55. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297. https://doi.org/10.1039/b508541a

  56. Peterson KA (2003) J Chem Phys 119:11099–11112. https://doi.org/10.1063/1.1622923

  57. Peterson KA, Puzzarini C (2005) Theor Chem Acc 114:283–296. https://doi.org/10.1007/s00214-005-0681-9

  58. Peterson KA, Figgen D, Dolg M, Stoll H (2007) J Chem Phys 126:124101. https://doi.org/10.1063/1.2647019

  59. Figgen D, Peterson KA, Dolg M, Stoll H (2009) J Chem Phys 130:164108. https://doi.org/10.1063/1.3119665

  60. Frenking G, Antes I, Böhme M, Dapprich S, Ehlers AW, Jonas V, Neuhaus A, Otto M, Stegmann R, Veldkamp A, Vyboishchikov SF (1996) Rev Comput Chem 8:63–144. https://doi.org/10.1002/9780470125854.ch2

  61. Martins LSC, Jorge FE, Franco ML, Ferreira IB (2016) J Chem Phys 145:244113. https://doi.org/10.1063/1.4973377

  62. Campos CT, de Oliveira AZ, Ferreira IB, Jorge FE, Martins LSC (2017) Chem Phys Lett 675:1–5. https://doi.org/10.1016/j.cplett.2017.02.080

  63. Jorge FE, Martins LSC, Franco ML (2016) Chem Phys Lett 643:84–88. https://doi.org/10.1016/j.cplett.2015.11.013

  64. Canal Neto A, Jorge FE (2013) Chem Phys Lett 582:158–162. https://doi.org/10.1016/j.cplett.2013.07.045

  65. de Berrêdo RC, Jorge FE (2010) J Mol Struct: THEOCHEM 961:107–112. https://doi.org/10.1016/j.theochem.2010.09.007

  66. Barros CL, De Oliveira PJP, Jorge FE, Canal Neto A, Campos M (2010) Mol Phys 108:1965–1972. https://doi.org/10.1080/00268976.2010.499377

  67. Canal Neto A, Muniz EP, Centoducatte R, Jorge FE (2005) J Mol Struct: THEOCHEM 718:219–224. https://doi.org/10.1016/j.theochem.2004.11.037

  68. Camiletti GG, Machado SF, Jorge FE (2008) J Comput Chem 29:2434–2444. https://doi.org/10.1002/jcc.20996

  69. Campos CT, Jorge FE (2013) Mol Phys 111:165–171. https://doi.org/10.1080/00268976.2012.709282

  70. Martins LSC, Jorge FE, Machado SF (2015) Mol Phys 113:3578–3586. https://doi.org/10.1080/00268976.2015.1040095

  71. Machado SF, Camiletti GG, Neto AC, Jorge FE, Jorge RS (2009) Mol Phys 107:1713–1727. https://doi.org/10.1080/00268970903042258

  72. Barbieri PL, Fantin PA, Jorge FE (2006) Mol Phys 104:2945–2954. https://doi.org/10.1080/00268970600899018

  73. Jorge FE, Canal Neto A, Camiletti GG, Machado SF (2009) J Chem Phys 130:064108. https://doi.org/10.1063/1.3072360

  74. Paschoal D, Marcial BL, Lopes JF, De Almeida WB, Dos Santos HF (2012) J Comput Chem 33:2292–2302. https://doi.org/10.1002/jcc.23061

  75. Paschoal D, Guerra CF, de Oliveira MAL, Ramalho TC, Dos Santos HF (2016) J Comput Chem 37:2360–2373. https://doi.org/10.1002/jcc.24461

  76. Carvalho J, Paschoal D, Fonseca Guerra C, Dos Santos HF (2020) Chem Phys Lett 745:137279. https://doi.org/10.1016/j.cplett.2020.137279

  77. Pantazis DA, Neese F (2011) J Chem Theory Comput 7:677–684. https://doi.org/10.1021/ct100736b

  78. Pantazis DA, Neese F (2012) Theor Chem Acc 131:1–7. https://doi.org/10.1007/s00214-012-1292-x

  79. Pantazis DA, Neese F (2009) J Chem Theory Comput 5:2229–2238. https://doi.org/10.1021/ct100736b

  80. Pantazis DA, Chen X-Y, Landis CR, Neese F (2008) J Chem Theory Comput 4:908–919. https://doi.org/10.1021/ct800047t

  81. Noro T, Sekiya M, Koga T (2012) Theor Chem Acc 131:1124. https://doi.org/10.1007/s00214-012-1124-z

  82. Noro T, Sekiya M, Koga T (2013) Theor Chem Acc 132:1363. https://doi.org/10.1007/s00214-013-1363-7

  83. Sekiya M, Noro T, Koga T, Shimazaki T (2012) Theor Chem Acc 131:1247. https://doi.org/10.1007/s00214-012-1247-2

  84. Roos BO, Lindh R, Malmqvist P-Å, Veryazov V, Widmark P-O (2005) Chem Phys Lett 409:295–299. https://doi.org/10.1016/j.cplett.2005.05.011

  85. Roos BO, Lindh R, Malmqvist PÅ, Veryazov V, Widmark PO (2005) J Phys Chem a 109:6575–6579. https://doi.org/10.1021/jp0581126

  86. Roos BO, Lindh R, Malmqvist PÅ, Veryazov V, Widmark PO, Borin AC (2008) J Phys Chem a 112:11431–11435. https://doi.org/10.1021/jp803213j

  87. Watanabe Y, Tatewaki H, Koga T, Matsuoka O (2006) J Comput Chem 27:48–52. https://doi.org/10.1002/jcc.20313

  88. Tsuchiya T, Abe M, Nakajima T, Hirao K (2001) J Chem Phys 115:4463–4472. https://doi.org/10.1063/1.1390515

  89. Nakajima T, Hirao K (2002) J Chem Phys 116:8270–8275. https://doi.org/10.1063/1.1470496

  90. Gomes ASP, Dyall KG, Visscher L (2010) Theor Chem Acc 127:369–381. https://doi.org/10.1007/s00214-009-0725-7

  91. Dyall KG (2004) Theor Chem Acc 112:403–409. https://doi.org/10.1007/s00214-004-0607-y

  92. Dyall KG (2007) Theor Chem Acc 117:483–489. https://doi.org/10.1007/s00214-006-0174-5

  93. Dyall KG (2009) J Phys Chem a 113:12638–12644. https://doi.org/10.1021/jp905057q

  94. Dyall KG (2011) Theor Chem Acc 129:603–613. https://doi.org/10.1007/s00214-011-0906-z

  95. Dyall KG (2006) Theor Chem Acc 115:441–447. https://doi.org/10.1007/s00214-006-0126-0

  96. Dyall KG, Gomes ASP (2009) Theor Chem Acc 125:97–100. https://doi.org/10.1007/s00214-009-0717-7

  97. Dyall KG (2012) Theor Chem Acc 131:1–20. https://doi.org/10.1007/s00214-012-1172-4

  98. Gomes ASP, Saue T, Visscher L, Jensen HJAa., Bast R, Aucar I A, Bakken V, Dyall KG, Dubillard S, Ekström U, Eliav E, Enevoldsen T, Faßhauer E, Fleig T, Fossgaard O, Halbert L, Hedegård ED, Helgaker T, Helmich-Paris B, Henriksson J, Iliaš M, Jacob ChR, Knecht S, Komorovský S, Kullie O, Lærdahl JK, Larsen CV, Lee YS, Nataraj HS, Nayak MK, Norman P, Olejniczak G, Olsen J, Olsen JMH, Park YC, Pedersen JK, Pernpointner M, Di Remigio R, Ruud K, Sałek P, Schimmelpfennig B, Senjean B, Shee A, Sikkema J, Thorvaldsen AJ, Thyssen J, van Stralen J, Vidal ML, Villaume S, Visser O, Winther T, Yamamoto S (2019) DIRAC, A relativistic ab initio electronic structure program, Release DIRAC19. doi: https://doi.org/10.5281/zenodo.3572669.

  99. Pollak P, Weigend F (2017) J Chem Theory Comput 13:3696–3705. doi: https://doi.org/10.1021/acs.jctc.7b00593

  100. Van Lenthe E, Baerends EJ (2003) J Comput Chem 24:1142–1156. https://doi.org/10.1002/jcc.10255

  101. Apps M, Choi E, Wheate N (2015) Endocr Relat Cancer 22:R219–R233. https://doi.org/10.1530/ERC-15-0237

  102. Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P (2016) Coord Chem Rev 310:41–79. https://doi.org/10.1016/j.ccr.2015.11.004

  103. Dasari S, Bernard Tchounwou P (2014) Eur J Pharmacol 740:364–378. https://doi.org/10.1016/j.ejphar.2014.07.025

  104. Johnstone TC, Suntharalingam K, Lippard SJ (2016) Chem Rev 116:3436–3486. https://doi.org/10.1021/acs.chemrev.5b00597

  105. Costa LAS, Rocha WR, De Almeida WB, Dos Santos HF (2005) J Inorg Biochem 99:575–583. https://doi.org/10.1016/j.jinorgbio.2004.11.017

  106. Pavankumar PNV, Seetharamulu P, Yao S, Saxe JD, Reddy DG, Hausheer FH (1999) J Comput Chem 20:365–382. https://doi.org/10.1002/(SICI)1096-987X(199902)20:3%3c365::AID-JCC8%3e3.0.CO;2-1

  107. Amado AM, Fiuza SM, Marques MPM, De Carvalho LAEB (2007) J Chem Phys 127:1–10. https://doi.org/10.1063/1.2787528

  108. Burda JV, Zeizinger M, Šponer J, Leszczynski J (2000) J Chem Phys 113:2224–2232. https://doi.org/10.1063/1.482036

  109. Zhang Y, Guo Z, You XZ (2001) J Am Chem Soc 123:9378–9387. https://doi.org/10.1021/ja0023938

  110. Burda JV, Zeizinger M, Leszczynski J (2004) J Chem Phys 120:1253–1262. https://doi.org/10.1063/1.1633757

  111. Barone V, Cossi M (1998) J Phys Chem a 102:1995–2001. https://doi.org/10.1021/jp9716997

  112. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627. https://doi.org/10.1021/j100096a001

  113. Visscher L, Dyall KG (1997) at Data Nucl Data Tables 67:207–224. https://doi.org/10.1006/adnd.1997.0751

  114. de Jong WA, Harrison RJ, Dixon DA (2001) J Chem Phys 114:48. https://doi.org/10.1063/1.1329891

  115. Barysz M, Sadlej AJ (2001) J Mol Struct: THEOCHEM 573:181–200. https://doi.org/10.1016/S0166-1280(01)00542-5

  116. Milburn GHW, Truter MR (1966) J Chem Soc A Inorganic, Phys Theor 1609-1616. doi: https://doi.org/10.1039/j19660001609.

  117. Bancroft DP, Lepre CA, Lippard SJ (1990) J Am Chem Soc 112:6860–6871. https://doi.org/10.1021/ja00175a020

  118. Hindmarsch K, House DA, Turnbull MM (1997) Inorg Chim Acta 257:11–18. https://doi.org/10.1016/S0020-1693(96)05403-5

  119. Vinje J, Sletten E (2007) Anticancer Agents Med Chem 7:35–54. https://doi.org/10.2174/187152007779313982

  120. Pregosin PS (1986) Annu Reports NMR Spectrosc 17:285–349. https://doi.org/10.1016/S0066-4103(08)60238-0

  121. Pesek JJ, Mason WR (1977) J Magn Reson 25:519–529. https://doi.org/10.1016/0022-2364(77)90217-7

  122. Freeman W, Pregosin P, Sze S, Venanzi L (1976) J Magn Reson 22:473–478. https://doi.org/10.1016/0022-2364(76)90010-X

  123. Still BM, Kumar PGA, Aldrich-Wright JR, Price WS (2007) Chem Soc Rev 36:665–686. https://doi.org/10.1039/B606190G

  124. Pregosin PS (1982) Coord Chem Rev 44:247–291. https://doi.org/10.1016/S0010-8545(00)80523-8

  125. Albrecht M, Rodríguez G, Schoenmaker J, van Koten G (2000) Org Lett 2:3461–3464. https://doi.org/10.1021/ol006484l

  126. Bühl M, Kaupp M, Malkina OL, Malkin VG (1999) J Comput Chem 20:91–105. https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1%3c91::AID-JCC10%3e3.0.CO;2-C

    Google Scholar 

  127. Pawlak T, Munzarová ML, Pazderski L, Marek R (2011) J Chem Theory Comput 7:3909–3923. https://doi.org/10.1021/ct200366n

  128. Koch KR, Burger MR, Kramer J, Westra AN (2006) Dalt Trans 3277–3284. doi: https://doi.org/10.1039/B605182K.

  129. Vícha J, Patzschke M, Marek R (2013) Phys Chem Chem Phys 15:7740. https://doi.org/10.1039/c3cp44440f

  130. Sutter K, Autschbach J (2012) J Am Chem Soc 134:13374–13385. https://doi.org/10.1021/ja3040762

  131. Sterzel M, Autschbach J (2006) Inorg Chem 45:3316–3324. https://doi.org/10.1021/ic052143y

  132. Burger MR, Kramer J, Chermette H, Koch KR (2010) Magn Reson Chem 48:S38–S47. https://doi.org/10.1002/mrc.2607

  133. Autschbach J, Zheng S (2008) Magn Reson Chem 46:S45–S55. https://doi.org/10.1002/mrc.2289

  134. Autschbach J, Le Guennic B (2004) Chem - Eur J 10:2581–2589. https://doi.org/10.1002/chem.200305513

  135. Tsipis AC, Karapetsas IN (2016) Magn Reson Chem 54:656–664. https://doi.org/10.1002/mrc.4426

  136. Tsipis AC, Karapetsas IN (2015) J Coord Chem 68:3788–3804. https://doi.org/10.1080/00958972.2015.1083095

  137. Gabano E, Marengo E, Bobba M, Robotti E, Cassino C, Botta M, Osella D (2006) Coord Chem Rev 250:2158–2174. https://doi.org/10.1016/j.ccr.2006.02.011

  138. Gilbert TM, Ziegler T (1999) J Phys Chem a 103:7535–7543. https://doi.org/10.1021/jp992202r

  139. Truflandier LA, Sutter K, Autschbach J (2011) Inorg Chem 50:1723–1732. https://doi.org/10.1021/ic102174b

  140. Le Guennic B, Autschbach J (2011) Can J Chem 89:814–821. https://doi.org/10.1139/v11-054

  141. Tsipis AC, Karapetsas IN (2014) Dalt Trans 43:5409–5426. https://doi.org/10.1039/C3DT53594K

  142. Rochon FD, Morneau A (1991) Magn Reson Chem 29:120–126. https://doi.org/10.1002/mrc.1260290205

  143. Kerrison SJS, Sadler PJ (1985) Inorg Chim Acta 104:197–201. https://doi.org/10.1016/S0020-1693(00)86771-7

  144. Rochon FD, Doyon M, Butler IS (1993) Inorg Chem 32:2717–2723. https://doi.org/10.1021/ic00064a023

  145. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396. https://doi.org/10.1021/jp810292n

  146. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) J Chem Phys 104:5497–5509. https://doi.org/10.1063/1.471789

  147. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260. https://doi.org/10.1021/ja00179a005

  148. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) J Cheminform 4:17. https://doi.org/10.1186/1758-2946-4-17

  149. Avogadro: an open-source molecular builder and visualization tool. Version 1.2.0. https://avogadro.cc/.

  150. Chemcraft - graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com.

  151. BIOVIA, Dassault Systèmes, BIOVIA Draw, 19.1, San Diego: Dassault Systèmes, 2020.

    Google Scholar 

  152. Cherinka B, Andrews BH, Sánchez-Gallego J, Brownstein J, Argudo-Fernández M, Blanton M, Bundy K, Jones A, Masters K, Law DR, Rowlands K, Weijmans A-M, Westfall K, Yan R (2019) Astron J 158:74. https://doi.org/10.3847/1538-3881/ab2634

  153. Laidler KJ, King MC (1983) J Phys Chem 87:2657–2664. https://doi.org/10.1021/j100238a002

Download references

Acknowledgements

The authors would like to thank the PIBIC-CNPq and the Brazilian agency FAPERJ (E-26/200.934/2018 – BOLSA). HFDS also than CNPq and FAPEMIG for the continuing support to NEQC-UFJF laboratory. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Fernando da Silva Paschoal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paschoal, D.F.d., Gomes, M.d., Machado, L.P.N., Dos Santos, H.F. (2021). Basis Sets for Heavy Atoms. In: Perlt, E. (eds) Basis Sets in Computational Chemistry. Lecture Notes in Chemistry, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-030-67262-1_7

Download citation

Publish with us

Policies and ethics