Skip to main content

Are Dietary Extracellular Vesicles Bioavailable and Functional in Consuming Organisms?

  • Chapter
  • First Online:
New Frontiers: Extracellular Vesicles

Part of the book series: Subcellular Biochemistry ((SCBI,volume 97))

Abstract

It has been well established that diet influences the health status of the consuming organism. Recently, extracellular vesicles (EVs) present in dietary sources are proposed to be involved in cross-species and kingdom communication. As EVs contain a lipid bilayer and carry bioactive cargo of proteins and nucleic acids, they are proposed to survive harsh degrading conditions of the gut and enter systemic circulation. Following the bioavailability, several studies have supported the functional role of dietary EVs in various tissues of the consuming organism. Simultaneously, multiple studies have refuted the possibility that dietary EVs mediate cross-species communication and hence the topic is controversial. The feasibility of the concept remains under scrutiny primarily owing to the lack of significant in vivo evidence to complement the in vitro speculations. Concerns surrounding EV stability in the harsh degrading gut environment, lack of mechanism explaining intestinal uptake and bioavailability in systemic circulation have impeded the acceptance of their functional role. This chapter discusses the current evidences that support dietary EV-based cross species communication and enlists several issues that need to be addressed in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179(3):1969–1978

    Article  CAS  PubMed  Google Scholar 

  • Akuma P, Okagu OD, Udenigwe CC (2019) Naturally occurring exosome vesicles as potential delivery vehicle for bioactive compounds. Front Sustain Food Syst. https://doi.org/10.3389/fsufs.2019.00023

  • Arntz OJ, Pieters BCH, Oliveira MC, Broeren MGA, Bennink MB, de Vries M, van Lent PLEM, Koenders MI, van den Berg WB, van der Kraan PM, van de Loo FAJ (2015) Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models. Mol Nutr Food Res 59(9):1701–1712

    Article  CAS  PubMed  Google Scholar 

  • Atkin-Smith GK, Tixeira R, Paone S, Mathivanan S, Collins C, Liem M, Goodall KJ, Ravichandran KS, Hulett MD, Poon IKH (2015) A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat Commun 6(1):7439

    Article  PubMed  Google Scholar 

  • Auerbach A, Vyas G, Li A, Halushka M, Witwer K (2016) Uptake of dietary milk miRNAs by adult humans: a validation study. F1000Research 5:721–721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ballard O, Morrow AL (2013) Human milk composition: nutrients and bioactive factors. Pediatr Clin N Am 60(1):49–74

    Article  Google Scholar 

  • Benmoussa A, Provost P (2019) Milk microRNAs in health and disease. Compr Rev Food Sci Food Saf 18(3):703–722

    Article  CAS  PubMed  Google Scholar 

  • Benmoussa A, Lee CHC, Laffont B, Savard P, Laugier J, Boilard E, Gilbert C, Fliss I, Provost P (2016) Commercial dairy cow milk microRNAs resist digestion under simulated gastrointestinal tract conditions. J Nutr 146(11):2206–2215

    Article  CAS  PubMed  Google Scholar 

  • Benmoussa A, Diallo I, Salem M, Michel S, Gilbert C, Sévigny J, Provost P (2019) Concentrates of two subsets of extracellular vesicles from cow’s milk modulate symptoms and inflammation in experimental colitis. Sci Rep 9(1):14661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X, Yu J (2019) Exosome-like nanoparticles from ginger rhizomes inhibited NLRP3 inflammasome activation (P06-072-19). Curr Dev Nutr 3(Suppl 1). https://doi.org/10.1093/cdn/nzz031.P06-072-19

  • Chen T, Xie MY, Sun JJ, Ye RS, Cheng X, Sun RP, Wei LM, Li M, Lin DL, Jiang QY, Xi QY, Zhang YL (2016) Porcine milk-derived exosomes promote proliferation of intestinal epithelial cells. Sci Rep 6:33862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Xi QY, Sun JJ, Ye RS, Cheng X, Sun RP, Wang SB, Shu G, Wang LN, Zhu XT, Jiang QY, Zhang YL (2017) Revelation of mRNAs and proteins in porcine milk exosomes by transcriptomic and proteomic analysis. BMC Vet Res 13(1):101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, Samykutty A, Zhang L, Yan J, Miller D, Suttles J, Zhang HG (2017) Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol Ther 25(7):1641–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson B, Zhang Y, Petrick JS, Heck G, Ivashuta S, Marshall WS (2013) Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nat Biotechnol 31(11):965–967

    Article  CAS  PubMed  Google Scholar 

  • German JB, Dillard CJ, Ward RE (2002) Bioactive components in milk. Curr Opin Clin Nutr Metab Care 5(6):653–658

    Article  CAS  PubMed  Google Scholar 

  • Hosseini SM, Talaei-khozani T, Sani M, Owrangi B (2014) Differentiation of human breast-Milk stem cells to neural stem cells and neurons. Neurol Res Int 2014. https://doi.org/10.1155/2014/807896

  • Howard KM, Jati Kusuma R, Baier SR, Friemel T, Markham L, Vanamala J, Zempleni J (2015) Loss of miRNAs during processing and storage of Cow’s (Bos taurus) Milk. J Agric Food Chem 63(2):588–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hristov M, Erl W, Linder S, Weber PC (2004) Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 104(9):2761–2766

    Article  CAS  PubMed  Google Scholar 

  • Iravani S, Varma RS (2019) Plant-derived edible nanoparticles and miRNAs: emerging frontier for therapeutics and targeted drug-delivery. ACS Sustain Chem Eng 7(9):8055–8069

    Article  CAS  Google Scholar 

  • Izumi H, Tsuda M, Sato Y, Kosaka N, Ochiya T, Iwamoto H, Namba K, Takeda Y (2015) Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. J Dairy Sci 98(5):2920–2933

    Article  CAS  PubMed  Google Scholar 

  • Jan AT (2017) Outer membrane vesicles (OMVs) of gram-negative bacteria: a perspective update. Front Microbiol 8:1053

    Article  PubMed  PubMed Central  Google Scholar 

  • Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, Xiang X, Deng Z-B, Wang B, Zhang L, Roth M, Welti R, Mobley J, Jun Y, Miller D, Zhang H-G (2013) Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther J Am Soc Gene Ther 21(7):1345–1357

    Article  CAS  Google Scholar 

  • Kalluri R, LeBleu VS (2020) The biology; function, and biomedical applications of exosomes. Science 367(6478):eaau6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalra H, Drummen GPC, Mathivanan S (2016) Focus on extracellular vesicles: introducing the next small big thing. Int J Mol Sci 17(2):170–170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keerthikumar S, Gangoda L, Liem M, Fonseka P, Atukorala I, Ozcitti C, Mechler A, Adda CG, Ang C-S, Mathivanan S (2015) Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes. Oncotarget 6(17):15375–15396

    Article  PubMed  PubMed Central  Google Scholar 

  • Kusuma RJ, Manca S, Friemel T, Sukreet S, Nguyen C, Zempleni J (2016) Human vascular endothelial cells transport foreign exosomes from cow’s milk by endocytosis. Am J Phys Cell Phys 310(10):C800–C807

    Article  Google Scholar 

  • Laubier J, Castille J, Le Guillou S, Le Provost F (2015) No effect of an elevated miR-30b level in mouse milk on its level in pup tissues. RNA Biol 12(1):26–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Doare K, Holder B, Bassett A, Pannaraj PS (2018) Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 9:361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manca S, Upadhyaya B, Mutai E, Desaulniers AT, Cederberg RA, White BR, Zempleni J (2018) Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci Rep 8(1):11321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin C, Patel M, Williams S, Arora H, Brawner K, Sims B (2018) Human breast milk-derived exosomes attenuate cell death in intestinal epithelial cells. Innate Immun 24(5):278–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melnik BC, Schmitz G (2019) Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med 17(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Melnik BC, John SM, Schmitz G (2014) Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? J Transl Med 12:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minciacchi VR, You S, Spinelli C, Morley S, Zandian M, Aspuria P-J, Cavallini L, Ciardiello C, Reis Sobreiro M, Morello M, Kharmate G, Jang SC, Kim D-K, Hosseini-Beheshti E, Tomlinson Guns E, Gleave M, Gho YS, Mathivanan S, Yang W, Freeman MR, Di Vizio D (2015) Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget 6(13):11327–11341

    Article  PubMed  PubMed Central  Google Scholar 

  • Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, Wang B, Zhang L, Kakar S, Jun Y, Miller D, Zhang HG (2014) Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res 58(7):1561–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munagala R, Aqil F, Jeyabalan J, Gupta RC (2016) Bovine milk-derived exosomes for drug delivery. Cancer Lett 371(1):48–61

    Article  CAS  PubMed  Google Scholar 

  • Munir J, Lee M, Ryu S (2019) Exosomes in food: health benefits and clinical relevance in diseases. Adv Nutr 11(3):687–696

    Article  PubMed Central  Google Scholar 

  • Oliveira MC, Arntz OJ, Blaney Davidson EN, van Lent PL, Koenders MI, van der Kraan PM, van den Berg WB, Ferreira AV, van de Loo FA (2016) Milk extracellular vesicles accelerate osteoblastogenesis but impair bone matrix formation. J Nutr Biochem 30:74–84

    Article  CAS  PubMed  Google Scholar 

  • Otsuka K, Yamamoto Y, Matsuoka R, Ochiya T (2018) Maintaining good miRNAs in the body keeps the doctor away? Perspectives on the relationship between food-derived natural products and microRNAs in relation to exosomes/extracellular vesicles. Mol Nutr Food Res 62(1):1700080

    Article  CAS  Google Scholar 

  • Pan BT, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101(3):942–948

    Article  CAS  PubMed  Google Scholar 

  • Parry HA, Mobley CB, Mumford PW, Romero MA, Haun CT, Zhang Y, Roberson PA, Zempleni J, Ferrando AA, Vechetti IJ Jr, McCarthy JJ, Young KC, Roberts MD, Kavazis AN (2019) Bovine milk extracellular vesicles (EVs) modification elicits skeletal muscle growth in rats. Front Physiol 10:436

    Article  PubMed  PubMed Central  Google Scholar 

  • Pathan M, Fonseka P, Chitti SV, Kang T, Sanwlani R, Van Deun J, Hendrix A, Mathivanan S (2019) Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res 47(D1):D516–D519

    Article  CAS  PubMed  Google Scholar 

  • Pieters BCH, Arntz OJ, Bennink MB, Broeren MGA, van Caam APM, Koenders MI, van Lent PLEM, van den Berg WB, de Vries M, van der Kraan PM, van de Loo FAJ (2015) Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β. PLoS One 10(3):e0121123–e0121123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prangishvili D, Holz I, Stieger E, Nickell S, Kristjansson JK, Zillig W (2000) Sulfolobicins, specific proteinaceous toxins produced by strains of the extremely thermophilic archaeal genus sulfolobus. J Bacteriol 182(10):2985–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MM, Shimizu K, Yamauchi M, Takase H, Ugawa S, Okada A, Inoshima Y (2019) Acidification effects on isolation of extracellular vesicles from bovine milk. PLoS One 14(9):e0222613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raimondo S, Naselli F, Fontana S, Monteleone F, Lo Dico A, Saieva L, Zito G, Flugy A, Manno M, Di Bella MA, De Leo G, Alessandro R (2015) Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget 6(23):19514–19527

    Article  PubMed  PubMed Central  Google Scholar 

  • Raposo G, Stahl PD (2019) Extracellular vesicles: a new communication paradigm? Nat Rev Mol Cell Biol 20(9):509–510

    Article  CAS  PubMed  Google Scholar 

  • Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Samuel M, Chisanga D, Liem M, Keerthikumar S, Anand S, Ang C-S, Adda CG, Versteegen E, Jois M, Mathivanan S (2017) Bovine milk-derived exosomes from colostrum are enriched with proteins implicated in immune response and growth. Sci Rep 7(1):5933–5933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanwlani R, Fonseka P, Chitti SV, Mathivanan S (2020) Milk-derived extracellular vesicles in inter-organism, cross-species communication and drug delivery. Proteomes 8(2):11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedykh SE, Purvinish LV, Monogarov AS, Burkova EE, Grigor'eva AE, Bulgakov DV, Dmitrenok PS, Vlassov VV, Ryabchikova EI, Nevinsky GA (2017) Purified horse milk exosomes contain an unpredictable small number of major proteins. Biochim Open 4:61–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Simonsen JB (2019) Pitfalls associated with lipophilic fluorophore staining of extracellular vesicles for uptake studies. J Extracell Vesicles 8(1):1582237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snow JW, Hale AE, Isaacs SK, Baggish AL, Chan SY (2013) Ineffective delivery of diet-derived microRNAs to recipient animal organisms. RNA Biol 10(7):1107–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takov K, Yellon DM, Davidson SM (2017) Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes. J Extracell Vesicles 6(1):1388731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, Hutchins E, Mu J, Deng Z, Luo C, Sundaram K, Sriwastva MK, Zhang L, Hsieh M, Reiman R, Haribabu B, Yan J, Jala VR, Miller DM, Van Keuren-Jensen K, Merchant ML, McClain CJ, Park JW, Egilmez NK, Zhang HG (2018) Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe 24(5):637–652.e638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Title AC, Denzler R, Stoffel M (2015) Uptake and function studies of maternal Milk-derived microRNAs. J Biol Chem 290(39):23680–23691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-‘t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH (2016) Comprehensive proteomic analysis of human milk-derived extracellular vesicles unveils a novel functional proteome distinct from other milk components. Mol Cell Proteomics 15(11):3412–3423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Li H, Yuan Y, Etheridge A, Zhou Y, Huang D, Wilmes P, Galas D (2012) The complex exogenous RNA spectra in human plasma: an interface with human gut biota? PLoS One 7(12):e51009–e51009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Zhuang X, Mu J, Deng Z-B, Jiang H, Zhang L, Xiang X, Wang B, Yan J, Miller D, Zhang H-G (2013) Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun 4(1):1867

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Ren Y, Mu J, Egilmez NK, Zhuang X, Deng Z, Zhang L, Yan J, Miller D, Zhang H-G (2015) Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res 75(12):2520–2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witwer KW (2018) Alternative miRNAs? Human sequences misidentified as plant miRNAs in plant studies and in human plasma. F1000Res 7:244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Witwer KW, Zhang C-Y (2017) Diet-derived microRNAs: unicorn or silver bullet? Genes Nutr 12:15–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Witwer KW, McAlexander MA, Queen SE, Adams RJ (2013) Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: limited evidence for general uptake of dietary plant xenomiRs. RNA Biol 10(7):1080–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woith E, Fuhrmann G, Melzig MF (2019) Extracellular vesicles-connecting kingdoms. Int J Mol Sci 20(22):5695

    Article  CAS  PubMed Central  Google Scholar 

  • Wolf T, Baier SR, Zempleni J (2015) The intestinal transport of bovine milk exosomes is mediated by endocytosis in human colon carcinoma Caco-2 cells and rat small intestinal IEC-6 cells. J Nutr 145(10):2201–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Farmer LM, Agyekum AAA, Hirschi KD (2015) Detection of dietary plant-based small RNAs in animals. Cell Res 25(4):517–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Hotz T, Broadnax L, Yarmarkovich M, Elbaz-Younes I, Hirschi KD (2016) Anomalous uptake and circulatory characteristics of the plant-based small RNA MIR2911. Sci Rep 6(1):26834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuana Y, Sturk A, Nieuwland R (2013) Extracellular vesicles in physiological and pathological conditions. Blood Rev 27(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • Yun B, Maburutse BE, Kang M, Park MR, Park DJ, Kim Y, Oh S (2020) Short communication: dietary bovine milk–derived exosomes improve bone health in an osteoporosis-induced mouse model. J Dairy Sci 103(9):7752–7760

    Article  CAS  PubMed  Google Scholar 

  • Zempleni J, Sukreet S, Zhou F, Wu D, Mutai E (2019) Milk-derived Exosomes and metabolic regulation. Ann Rev Anim Biosci 7(1):245–262

    Article  CAS  Google Scholar 

  • Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z, Liang X, Cai X, Yin Y, Wang C, Zhang T, Zhu D, Zhang D, Xu J, Chen Q, Ba Y, Liu J, Wang Q, Chen J, Wang J, Wang M, Zhang Q, Zhang J, Zen K, Zhang C-Y (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22(1):107–126

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, Han MK, Xiao B, Xu C, Srinivasan S, Merlin D (2016a) Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 101:321–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Viennois E, Xu C, Merlin D (2016b) Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers 4(2):e1134415–e1134415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang M, Xiao B, Wang H, Han MK, Zhang Z, Viennois E, Xu C, Merlin D (2016c) Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for Colon Cancer therapy. Mol Ther 24(10):1783–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Li X, Liu J, Dong L, Chen Q, Liu J, Kong H, Zhang Q, Qi X, Hou D, Zhang L, Zhang G, Liu Y, Zhang Y, Li J, Wang J, Chen X, Wang H, Zhang J, Chen H, Zen K, Zhang CY (2015) Honeysuckle-encoded atypical microRNA2911 directly targets influenza a viruses. Cell Res 25(1):39–49

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Paz HA, Sadri M, Cui J, Kachman SD, Fernando SC, Zempleni J (2019) Dietary bovine milk exosomes elicit changes in bacterial communities in C57BL/6 mice. Am J Physiol Gastrointest Liver Physiol 317(5):G618–g624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang X, Deng Z-B, Mu J, Zhang L, Yan J, Miller D, Feng W, McClain CJ, Zhang H-G (2015) Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles 4:28713–28713

    Article  PubMed  CAS  Google Scholar 

  • Zhuang X, Teng Y, Samykutty A, Mu J, Deng Z, Zhang L, Cao P, Rong Y, Yan J, Miller D, Zhang H-G (2016) Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression. Mol Ther 24(1):96–105

    Article  CAS  PubMed  Google Scholar 

  • Zijlstra A, Di Vizio D (2018) Size matters in nanoscale communication. Nat Cell Biol 20(3):228–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zonneveld MI, Brisson AR, van Herwijnen MJC, Tan S, van de Lest CHA, Redegeld FA, Garssen J, Wauben MHM, Nolte-'t Hoen ENM (2014) Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures. J Extracell Vesicles. https://doi.org/10.3402/jev.v3403.24215

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Mathivanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanwlani, R., Fonseka, P., Mathivanan, S. (2021). Are Dietary Extracellular Vesicles Bioavailable and Functional in Consuming Organisms?. In: Mathivanan, S., Fonseka, P., Nedeva, C., Atukorala, I. (eds) New Frontiers: Extracellular Vesicles. Subcellular Biochemistry, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-030-67171-6_21

Download citation

Publish with us

Policies and ethics