Skip to main content

Water Spinach (Ipomoea aquatica Forsk.) Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Vegetable Crops

Abstract

Ipomoea aquatica Forsk. (Convolvulaceae) is a commonly grown vegetable in the Americas, Africa and especially Southeast Asia, including India. Due to the presence of numerous secondary metabolites, this plant has considerable therapeutic as well nutraceutical value and is categorized among highly prioritized but neglected leafy vegetables. Proper identification of the higher quality genotypes of I. aquatica will help scientists explore major genes to develop future high-quality varieties. Therefore, an integrated approach combining traditional and molecular plant breeding should be carried out to strengthen future breeding programs. Identification of traits controlling genes by extensive database searching with bioinformatics, followed by genomics and transgenic approaches, opens a new possibility to use these beneficial vegetables as potent nutraceuticals, especially in developing countries where malnutrition is a matter of concern. Application of plant cell culture technique can be an attractive field of research for this plant species. In this context micropropagation is the best choice for producing year around pilot-scale production within a short time span. In vitro plantlets can also be conserved as artificial seed to maintain elite plant lines with augmented secondary metabolites. Screening by the use of hairy root culture under photoautotrophic condition to detect contaminants and pollution can assure cultivars are safe to consume. This chapter presents an overview of the origin, distribution, botanical classification , breeding through classical and molecular approaches, tissue-culture practices like rapid micropropagation for high frequency regeneration, use of elite clones and conservation by alginate entrapment, prospects of using hairy root culture, recent developments and future scope of biotechnology and molecular biology using bioinformatics and transgenic approaches and their application for improvement of I. aquatica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostini E, Talano MA, González PA et al (2013) Application of hairy roots for phytoremediation: what makes them an interesting tool for this purpose. Appl Microbiol Biotechnol 97:3

    Article  CAS  Google Scholar 

  • Akimoto C, Aoyagi H, Tanaka H (1999) Endogenous elicitor-like effects of alginate on physiological activities of plant cells. Appl Microbiol Biotechnol 52(3):429–436

    Google Scholar 

  • Alfermann AW, Reinhard E (1980) Biotransformations by plant tissue culture. Bull Soc Chim Fr Nos 1–2:II-35–II-45

    Google Scholar 

  • Anonymous (1959) Wealth of India, raw materials. CSIR, New Delhi 5:237–237

    Google Scholar 

  • Ara H, Jaiswal U, Jaiswal V (2000) Synthetic seed: prospects and limitation. Curr Sci 78:1438–1444

    Google Scholar 

  • Ardelean M, Cordea M, Pamfil D et al (2004) Revealing genetic diversity of three sections (Pharbitis, Quamoclit and Batatas) of Ipomoea genus by means of RAPD analysis. Acta Hortic 651:149–153

    Article  CAS  Google Scholar 

  • Attoumbré J, Charlet S, Baltora-Rosset S, et al (2006) High accumulation of dehydrodiconiferyl alcohol-4-β-D-glucoside in free and immobilized Linum usitatissimum cell cultures. Plant Cell Rep 25:859–864

    Google Scholar 

  • Austin DF (2007) Water spinach (Ipomoea aquatica, Convolvulaceae), a food gone wild. Ethnobot Res Appl 5:123–146

    Article  Google Scholar 

  • Badruzzaman SM, Husain W (1992) Some aquatic and marshy land medicinal plants from Hardoi district of Uttar Pradesh. Fitoterapia 63:245–247

    Google Scholar 

  • Bergman M, Varshavsky L, Gottlieb HE, Grossman S (2001) The antioxidant activity of aqueous spinach extract: chemical identification of active fractions. Phytochemisty 58:143–152

    Article  CAS  Google Scholar 

  • Brodelius P, Deus B, Mosbach K, Zenk MH (1979) Immobilized plant cells for the production and transformation of natural products. Feddes Lett 103(1):93–97

    CAS  Google Scholar 

  • Burgos NR, Stephenson DO, Agrama HA et al (2011) A survey of genetic diversity of the weedy species Ipomoea lacunosa L. in the USA Mid-South. Am J Plant Sci 2:396–407

    Article  CAS  Google Scholar 

  • Burkill A (1966) Dictionary of the economic products of the Malay Peninsula. Ministry of Agriculture and Cooperatives, Kuala Lumpur

    Google Scholar 

  • Cai Q-Y, Mo C-H, Zeng Q-Y, Wu Q-T, Férard J-F, Antizar-Ladislao B (2008) Potential of Ipomoea aquatica cultivars in phytoremediation of soils contaminated with di-n-butyl phthalate. Environ Exp Bot 62(3):205–211

    Google Scholar 

  • Candlish JK (1983) Tocopherol content of some Southeast Asian foods. J Agric Food Chem 31:166–168

    Article  CAS  PubMed  Google Scholar 

  • Candlish JK, Gourley L, Lee HP (1987) Dietary fiber and starch contents of some Southeast Asian vegetables. J Agric Food Chem 35:319–321

    Article  CAS  Google Scholar 

  • Chandra JH, Shamli M (2015) Antibacterial, antioxidant and in silico study of Ipomoea aquatic Forsk. JPAM 9(2):1371–1376

    CAS  Google Scholar 

  • Chauhan H, Singh J (2018) Cluster analysis of water spinach (Ipomoea aquatica Forsk.) genotypes collected from various places of Chhattisgarh region. Trend Biosci 11(6):10067, ISSN 0974-8431

    Google Scholar 

  • Chauhan H, Singh J, Sharma D (2017) Genetic variability and heritability estimation in water spinach (Ipomoea aquatica Forsk) genotypes. Int J Curr Microbiol Appl Sci 6(9):3018–3024. https://doi.org/10.20546/ijcmas.2017.609.370

    Article  Google Scholar 

  • Chauhan ES, Sharma K, Bist R (2019) Research Journal of Pharmacy and Technology 12(2):891

    Google Scholar 

  • Cha-um S, Roytrakul S, Kirdmanee C et al (2007) A rapid method for identifying salt tolerant water Convolvulus (Ipomoea aquatica Forsk) under in vitro photoautotrophic conditions. Plant Stress 1(2):228–234

    Google Scholar 

  • Chen BH, Chen YY (1992) Determination of carotenoids and chlorophylls in water convolvulus (Ipomoea aquatica) by liquid chromatography. Food Chem 45:129–130

    Article  CAS  Google Scholar 

  • Chen BH, Yang SH, Han IH (1991) Characterization of major carotenoids in water convolvulus (Ipomoea aquatica) by open-column, thin-layer and high-performance liquid chromatography. J Chromatogr 543:147–155

    Article  CAS  Google Scholar 

  • Chitsa H, Mtaita T, Tabarira J (2014) Nutrient content of water spinach (Ipomoea aquatica) under different harvesting stages and preservation methods in Zimbabwe. Int J Biol Chem Sci 8:854–861

    Article  Google Scholar 

  • Chu YH, Chang CL, Hsu HF (2000) Flavonoid content of several vegetables and their antioxidant activity. J Sci Food Agric 80:561–566

    Article  CAS  Google Scholar 

  • Cornelis J, Nugteren JA, Westphal E (1985) Kangkong (Ipomoea aquatica Forssk.): an important leaf vegetable in South-East Asia. Review Article. Abstr Trop Agric 10(4):9–21

    Google Scholar 

  • Curtis WR, Wang P, Humphrey A (1995) Role of calcium and differentiation in enhanced sesquiterpene elicitation from calcium alginate-immobilized plant tissue. Enzyme Microb Technol 17(6)554–557

    Google Scholar 

  • Daniel M (1989) Polyphenols of some Indian vegetables. Curr Sci 58:1332–1333

    CAS  Google Scholar 

  • Das S (2011) Congruence between morphological and molecular approach in understanding species relationship in Ipomoea spp.: a rare event in taxonomy. Asian J Plant Sci 10(4):263–268

    Article  CAS  Google Scholar 

  • Das S, Mukherjee KK (1997) Morphological and biochemical investigations on Ipomoea seedlings and their species interrelationships. Ann Bot 79:565–571

    Article  Google Scholar 

  • Dewanjee S, Dua TK, Khanra R, Das S, Barma S, Joardar S, Bhattacharjee N, Zia-Ul-Haq M, JaafarHZE (2015) Water Spinach, Ipomoea aquatica (Convolvulaceae), Ameliorates Lead Toxicity by Inhibiting Oxidative Stress and Apoptosis. PLOS ONE10(11):e0143766

    Google Scholar 

  • Dhanasekaran S, Muralidaran P (2010) CNS depressant and antiepileptic 55 activities of the methanol extract of the leaves of Ipomoea aquatica Forsk. E J Chem 7:15–61

    Article  Google Scholar 

  • Daniel FA (2007) Water Spinach (Ipomoea aquatica, Convolvulaceae): a food gone wild. Ethnobot Res Appl 5:123–146

    Google Scholar 

  • Dua TK, Dewanjee S, Gangopadhyay M et al (2015) Ameliorative effect of water spinach, Ipomea aquatica (Convolvulaceae), against experimentally induced arsenic toxicity. J Transl Med 13:81. https://doi.org/10.1186/s12967-015-0430-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duc BM, Humphries D, Mai ITB et al (1999) Iron and vitamin C content of commonly consumed foods in Vietnam. Asia-Pac J Clin Nutr 8:36–38

    Article  CAS  PubMed  Google Scholar 

  • Duke JA, Ayensu ES (1985) Medicinal plants of China. Reference Publications, Algonac Michigan

    Google Scholar 

  • Edie HH, Ho WCB (1969) Ipomoea aquatica as a vegetable crop in Hong Kong. Econ Bot 23(1):32–36

    Article  Google Scholar 

  • Faruq UZ, Sani A, Hassan LG (2002) Proximate composition of sickle pod (Senna obtusfolia) leaves. Niger J Appl Sci 11:157–164

    Google Scholar 

  • Fedorov AA (1969) Chromosome numbers of flowering plants. Academy of Sciences of USSR, Moscow

    Google Scholar 

  • Folorunso AE, Illoh HC, Olorungbeja JA (2013) Numerical taxonomy of some Ipomoea (Linn.) species in south-west Nigeria. Ife J Sci 15(1):63

    Google Scholar 

  • Furuya T, Yoshikawa T, Taire M (1984) Biotransformation of codeinone to codeine by immobilized cells of Papaver somniferum. Phytochemistry 23:999

    Article  CAS  Google Scholar 

  • Gamble JS (1921) Flora of the presidency of Madras, India. Digital Library of India, India. Digital Library of India Item 2015.217737

    Google Scholar 

  • Germana MA, Micheli M, Chiancone B et al (2011) Organogenesis and encapsulation of in vitro-derived propagules of carrizo citrange [Citrus sinensis (L.) Osb 9 Poncirus trifoliata (L.) Raf]. Plant Cell Tiss Organ Cult 106 (in press)

    Google Scholar 

  • Gilleta F, Roisin C, Fliniaux MA, Jacquin-Dubreuil A, Barbotin JN, Nava-Saucedo JE (2000) Immobilization of Nicotiana tabacum plant cell suspensions within calcium alginate gel beads for the production of enhanced amounts of scopolin. Enzyme Microbial Technol 26(2–4):229–234

    Google Scholar 

  • Gong Y, Yuan J, Yang Z et al (2010) Cadmium and lead accumulations by typical cultivars of water spinach under different soil conditions. Fresenius Environ Bull 19(2):190–197

    CAS  Google Scholar 

  • Gontier E, Sangwan BS, Barbotin JN (1994) Effects of calcium, alginate, and calcium-alginate immobilization on growth and tropane alkaloid levels of a stable suspension cell line of Datura innoxia Mill. Plant Cell Rep 13:533–536 https://doi.org/10.1007/BF00232951

  • Grant CA, Clarke JM, Duguid S et al (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ 390:301–310

    Article  CAS  PubMed  Google Scholar 

  • Grubben GJH (2004) Ipomoea aquatica Forssk. In: Gruben GJH, Denton O (eds) APlant resources of Tropical Africa 2. Vegetables. pp 332–335. Wageningen, Netherlands: PROTA Foundations; Wageningen, Netherlands/Backhuys Publishers; Lieden, Netherlands/CTA

    Google Scholar 

  • Gupta S, Lakshmi AJ, Manjunath MN et al (2005) Analysis of nutrient and antinutrient content of underutilized green leafy vegetables. LWT Food Sci 38(4):339–345

    Article  CAS  Google Scholar 

  • Hall RD, Holden MA, Yeomani MM (1989) Immobilization of higher plant cells. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, Medicinal and aromatic plants I, vol 4. Springer, Berlin, pp 136–156

    Google Scholar 

  • Hamid K, Ullah MO, Sultana S, Howlader MA, Basak D, Nasrin F, Rahman MM (2011) Evaluation of the Leaves of Ipomoea aquatica for its Hypoglycemic and Antioxidant Activity. J Pharm Sci Res 3(7):1330–1333

    Google Scholar 

  • Hirofumi N, Masaki T, Masahito T (2000) Development and characterization of a photoautotrophic cell line of pack bung hairy roots. J Biosci Bioeng 89:151–156

    Article  Google Scholar 

  • Hoang TL, Böhme M (2001) Influence of humic acid on the growth of water spinach (Ipomoea aquatica Forsk) in hydroponic system. Wissenschaftliche Arbeitstagung, BDGL-Schriftenreihe, Band 19:57

    Google Scholar 

  • Hongfei F, Bijun X, Shaojun M et al (2011) Evaluation of antioxidant activities of principal carotenoids available in water spinach (Ipomoea aquatica). J Food Compos Anal 24(2):288–297

    Article  CAS  Google Scholar 

  • Huang B, Xin J, Yang Z, Zhou Y, Yuan J, Gong Y (2009a) Suppression subtractive hybridization (SSH)-based method for estimating Cd-induced differences in gene expression at cultivar level and identification of genes induced by Cd in two water spinach cultivars. J Agric Food Chem 57(19):8950–8962

    Google Scholar 

  • Huang B, Xin J, Yang Z, Zhou Y, Yuan J, Gong Y (2009b) Suppression subtractive hybridization (SSH)-based method for estimating Cd-induced differences in gene expression at cultivar level and identification of genes induced by Cd in two water spinach cultivars. Agric Food Chem 57(523):8950–8962

    Google Scholar 

  • Huang B, Xin J, Dai H, et al (2014) Translocation analysis and safety assessment in two water spinach cultivars with distinctive shoot Cd and Pb concentrations. Environ Sci Pollut Res 21:11565–11571

    Google Scholar 

  • Huang YY, Shen C, Chen JX et al (2016) Comparative transcriptome analysis of two Ipomoea aquatica Forsk cultivars targeted to explore possible mechanism of genotype-dependent accumulation of cadmium. J Agric Food Chem 64(25):5241–5250

    Google Scholar 

  • Huang Y-Y, Gong F-Y, Shen C et al (2018) Cloning, characterization and expression analysis of metallothioneins from Ipomoea aquatica and their cultivar-dependent roles in Cd accumulation and detoxification. Ecotoxicol Environ Saf 165:450–458

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Fareed S, Ansari S et al (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4(1):10–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ibrahim MH, Abas NA, Zahra SM (2019) Impact of salinity stress on germination of water spinach (Ipomoea aquatica). ARRB 31(5):1–12

    Google Scholar 

  • Igwenyi IO, Offor CE, Ajah DA et al (2011) Chemical compositions of Ipomoea aquatica (green kangkong). Int J Pharm Bio Sci 2(4):593–598

    CAS  Google Scholar 

  • Imb A, Pham LQ (1995) Lipid composition of ten edible seed species from North Vietnam. J Am Oil Chem Soc 72:957–961

    Article  Google Scholar 

  • Jayeola AA, Oladunjoye OR (2012) Systematic studies in some Ipomoea Linn. Species using pollen and flower morphology. Ann West Univ Timis ßoara, Ser Biol 15(2):177–187

    Google Scholar 

  • Johnson TS, Ravishankar GA, Venkataraman LV (1991) Elicitation of Capsicin production in freely suspended cells and immobilized cell cultures of Capsicum frutescens Mill. Food Biotechnol 5(2):197–205

    Article  CAS  Google Scholar 

  • Kala A, Prakash J (2004) Nutrient composition and sensory profile of differently cooked green leafy vegetables. Int J Food Prop 7:659–669

    Article  CAS  Google Scholar 

  • Kaur J, Rawat A, Renu SK et al (2016) Taxonomy, phytochemistry, traditional uses and cultivation of Ipomoea Aquatica Forsk. Imp J Interdiscip Res 2(10):408–412

    Google Scholar 

  • Khamwan K, Akaracharanya A, Chareonpornwattana S et al (2003) Genetic transformation of water spinach (Ipomoea aquatica). Plant Biotechnol 20(4):335–338

    Article  CAS  Google Scholar 

  • Khare CP (2007) Indian medicinal plants: an illustrated dictionary. Springer, New York

    Book  Google Scholar 

  • Kino-oka M, Taya M, Tone S (1991) Production of superoxide dismutase from plant hairy roots by considering the effect of nitrogen source in their cultures. Kagaku Kogaku Ronbunshu 17:1012–1018. (in Japanese)

    Article  CAS  Google Scholar 

  • Kiradmanee C, Phaephun W, Teerakathiti T et al (2006) An effective in-vitro selection of water spinach (Ipomoea aquatica Forsk) for NaCl-, KH2PO4- and temperature-stresses. Environ Control Biol 44(4):265–277

    Article  Google Scholar 

  • Kirtkar KR, Basu BD (1952) Indian medicinal plants, 1st edn. Parbani Press, Kolkata

    Google Scholar 

  • Kiuo-oka M, Nagatome H, Taya M et al (1996) Effect of light irradiation on growth and chlorophyll formation of pak-bung green hairy roots. J Chem Eng Jpn 29(6):1050–1054

    Article  Google Scholar 

  • Lane EA, Canty MJ, More SJ (2015) Cadmium exposure and consequence for the health and productivity of farmed ruminants. Res Vet Sci 101:132–139. https://doi.org/10.1016/j.rvsc.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  • Lawal U, Maulidiani M, Shaari K et al (2017) Discrimination of Ipomoea aquatica cultivars and bioactivity correlations using NMR-based metabolomics approach. Plant Biosyst 151(5):833–843

    Article  Google Scholar 

  • Li N, Kang Y, Pan WJ et al (2015) Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bio accessible heavy metals in soil near a waste-incinerator site. South China. Sci Total Environ 521–522:144–151

    Article  PubMed  CAS  Google Scholar 

  • Li W, Ding H, Zhang F et al (2016) Effects of water spinach Ipomoea aquatica cultivation on water quality and performance of Chinese soft-shelled turtle Pelodiscus sinensis pond culture. Aquac Environ Interact 8:567–574. https://doi.org/10.3354/aei00198

    Article  Google Scholar 

  • Lian GY, Gang YJ, Yi YZ et al (2010) Cadmium and lead accumulations by typical cultivars of water spinach under different soil conditions. Fresenius Environ Bull 19(2):190–197

    Google Scholar 

  • Mabberley DJ (1997) The plant book, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Malakar C, NathChoudhury PP (2015) Pharmacological potentiality and medicinal uses of Ipomoea aquatic Forsk: a review. Asian J Pharm Clin Res 8(2):60–63

    CAS  Google Scholar 

  • Mariani R, Perdana F, Fadhlillah FM et al (2019) Antioxidant activity of Indonesian water spinach and land spinach (Ipomoea aquatica): a comparative study. J Phys Conf Ser 1402:05509

    Article  CAS  Google Scholar 

  • Masahiro KO, Hirofumi N, Masahito T et al (1996) Effect of light irradiation on growth and chlorophyll formation of packbung green hairy roots. J Chem Eng Jpn 29:1050–1054

    Article  Google Scholar 

  • Masanori F, Atsuhiko N, Kazuya Y (1997) Methods for introducing foreign genes into tropical aquatic plant Ipomea aquatica and regenerating the plant. Patent CA Section 3

    Google Scholar 

  • Meerak J, Akaracharanya A, Leepipatpiboon N et al (2006) Simultaneous expression of serineacetyl transferase and cysteine synthase results in enhanced sulfate uptake and increased biomass in Ipomaea aquatica. Plant Biotechnol 23:185–189

    Article  CAS  Google Scholar 

  • Miean KH, Mohamed S (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin and apigenin) content of edible tropical plants. J Agric Food Chem 49:3106–3112

    Article  CAS  PubMed  Google Scholar 

  • Miller RE, Rauscher MD, Manos PS (1999) Phylogenetic systematics of Ipomoea (Convolvulaceae) based on ITS and WAXY sequences. Syst Bot 24:209–227

    Article  Google Scholar 

  • Miller RE, McDonald JA, Manos PS (2004) Systematics of Ipomoea subgenus Quamoclit (Convolvulaceae) based on ITS sequence data and a Bayesian phylogenetic analysis. Am J Bot 91:1208–1218

    Article  PubMed  Google Scholar 

  • Milner MJ, Mitani-Ueno N, Yamaji N et al (2014) Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation. Plant J 78(530):398–410

    Article  CAS  PubMed  Google Scholar 

  • Moontongchoon P, Chadchawan S, Leepipatpiboon N et al (2008) Cadmium-tolerance of transgenic Ipomoea aquatica expressing serine acetyltransferase and cysteine synthase. Plant Biotechnol 25:201–203

    Article  CAS  Google Scholar 

  • Moulin MM, Rodrigues R, Gonçalves LSA, Sudré CP, Pereira MG (2012) A comparison of RAPD and ISSR markers reveals genetic diversity among sweet potato landraces (Ipomoea batatas (L.) Lam.). Acta Scientiarum. Agronomy 34(2)

    Google Scholar 

  • Munger HM (1999) Enhancement of horticulture crops for improved health. Hortic Sci 34:1158–1159

    Google Scholar 

  • Nadkarni AK (1954) Indian materia medica, 3rd edn. Popular Books, Bombay

    Google Scholar 

  • Nagatome IL, Tsutsumi M, Kino-oka M et al (2000) Development and characterization of a photoautotrophic cell line of pak-bung hairy roots. J Biosci Bioeng 89:151–156

    Article  CAS  PubMed  Google Scholar 

  • Nahar KK, Alam SS (2016) Karyotype and RAPD analysis of ipomoea aquatica samples collected from different industrial effluent affected areas. Cytologia 81(3):285–290

    Article  CAS  Google Scholar 

  • Naskar KR (1990) Aquatic & semi aquatic plants of lower Ganga delta. Daya Publishing, Delhi

    Google Scholar 

  • Ng CC, Rahman MM, Boyce AN, Abas MR (2016a) Heavy metals phyto-assessment in commonly grown vegetables: water spinach (I. aquatica) and okra (A. esculentus). SpringerPlus 5:469. https://doi.org/10.1186/s40064-016-2125-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng CC, Rahman MM, Boyce AN et al (2016b) Heavy metals phyto-assessment in commonly grown vegetables: water spinach (I. aquatica) and okra (A. esculentus). Springerplus 5:469–478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ngamsaeng A, Thy S, Preston TR (2004) Duckweed (Lemna minor) and water spinach (Ipomoea aquatica) as protein supplements for ducks fed broken rice as the basal diet. Livest Res Rural Dev 16:18–24

    Google Scholar 

  • Ninomiya K, Nagatome H, Kino-oka M et al (2001) Elongating potential of pak-bung hairy roots under photoautotrophic culture condition. J Chem Eng Jpn 34:1396–1401

    Article  Google Scholar 

  • Ninomiya K, Oogami Y, Kino-oka M et al (2002) Elongating responses to herbicides of heterotrophic and photoautotrophic hairy roots derived from pak-bung plant. J Biosci Bioeng 93:505–508

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya K, Oogami Y, Kino-oka M et al (2003) Assessment of herbicidal toxicity based on nondestructive measurement of local chlorophyll content in photoautotrophic hairy roots. J Biosci Bioeng 95(3):264–270

    Article  CAS  PubMed  Google Scholar 

  • Ogle BM, Ha-Thi AD, Mulokozi G et al (2001) Micronutrient composition and nutritional importance of gathered vegetables in Vietnam. Int J Food Sci Nutr 52:485–499

    Article  CAS  PubMed  Google Scholar 

  • Ogunwenmo KO (2003) Cotyledon morphology: an aid in identification of Ipomoea taxa (Convolvulaceae). Feddes Rep 114:198–203

    Article  Google Scholar 

  • Ogunwenmo KO, Oyelana OA (2009) Biotypes of Ipomoea aquatica Forssk. (Convolvulaceae) exhibit ecogeographic and cytomorphological variations in Nigeria. Plant Biosyst 143(1):71–80

    Article  Google Scholar 

  • Palada MC, Crossman SMA (1999) Evaluation of tropical leaf vegetables in the Virgin Islands. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, pp 388–393

    Google Scholar 

  • Pandey P, Jha M (2019) Response of different media on growth and yield of water spinach (Ipomoea aquatic Forsk) under container gardening. J Pharmacogn Phytochem 8(5):1775–1776

    Google Scholar 

  • Pandjaitan N, Howard LR, Morelock T, Gil MI (2005) Antioxidant capacity and phenolic content of spinach as affected by genetics and maturation. J Agric Food Chem 53:8618–8623

    Article  CAS  PubMed  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patnaik S (1976) Autecology of Ipomoea aquatica Forsk. J Inland Fish Soc India 8:77–82

    Google Scholar 

  • Payne WJ (1956) Ipomoea reptans Poir a useful tropical fodder plant. Trop Agric Trin 33:302–305

    CAS  Google Scholar 

  • Perry LM, Metzger J (1980) Medicinal plants of east and Southeast Asia: attributed properties and uses. MIT Press, Cambridge, MA

    Google Scholar 

  • Pinker I, Bubner U, Böhme M (2004) Selection of water spinach genotypes (Ipomoea aquatica Forsk.) for cultivation in greenhouses. Acta Hortic 659:439–445

    Article  Google Scholar 

  • Prasad MNV (2019) Transgenic plant technology for remediation of toxic metals and metalloids. Academic, London, pp 395–428. https://doi.org/10.1016/B978-0-12-814389-6.00019-5

    Book  Google Scholar 

  • Prasad NK, Divakar S, Shivamurthy GR et al (2005) Isolation of a free radical scavenging antioxidant from water spinach (Ipomoea aquatica Forsk.). J Sci Food Agric 85:1461–1468

    Article  CAS  Google Scholar 

  • Prasad NK, Shiva Prasad M, Aradhya SM et al (2006) Callus induction from Ipomoea aquatica Forsk. leaf and its antioxidant activity. Indian J Biotechnol 5:107–111

    CAS  Google Scholar 

  • Rai UN, Sinha S (2001) Distribution of metals in aquatic edible plants: Trapa natans (Roxb.) Makino and Ipomoea aquatica Forsk. Environ Monit Assess 70(3):241–252

    Article  CAS  PubMed  Google Scholar 

  • Rai MK, Asthana P, Singh SK et al (2009) The encapsulation technology in fruit plants - a review. Biotechnol Adv 27:671–679

    Article  PubMed  Google Scholar 

  • Ramakrishna SV, Reddy GR, Curtis WR et al (1993) Production of solavetivone by immobilized cells of Hyoscyamus muticus. Biotechnol Lett 15:301

    Article  CAS  Google Scholar 

  • Rane VA, Patel BB (2015) Phylogenetic relationship of ten Ipomoea JACQ. species based on RAPD analysis. Int J Inst Pharm Life Sci 5(2):203–212

    Google Scholar 

  • Rao TVRK, Vijay T (2002) Iron, calcium, p-carotene, ascorbic acid and oxalic acid contents of some less common leafy vegetables consumed by the tribals of pumia district of Bihar. J Food Sci Technol 39:560–562

    CAS  Google Scholar 

  • Reed CF (1977) Economically important foreign weeds: potential problems in the United States, 1st edn. USDA, Washington, DC

    Google Scholar 

  • Roi J (1955) Treatise on Chinese medicinal plants. Paul Lechevalier, Paris

    Google Scholar 

  • Sajc L, Vunjak-Novakovic G, Grubisic D, Kovačević N, Vuković D, Bugarski B (1995) Production of anthraquinones by immobilized Frangula alnus Mill. plant cells in a four-phase air-lift bioreactor. Appl Microbiol Biotechnol 43(3):416–423

    Google Scholar 

  • Sakulkoo N, Akaracharanya A, Chareonpornwattana S et al (2005) Hyper-assimilation of sulfate and tolerance to sulfide and cadmium in transgenic water spinach expressing an Arabidopsis adenosine phosphosulfate reductase. Plant Biotechnol 22(1):27–32

    Article  CAS  Google Scholar 

  • Samuelsson G, Farah MH, Claeson P et al (1992) Inventory of plants used in traditional medicine in Somalia II plants of the families Combretaceae to Labiatae. J Ethnopharmacol 37:47–70

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Tabata S, Hirakawa H et al (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641. https://doi.org/10.1038/nature11119

    Article  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183. https://doi.org/10.1038/nature08670

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Huang YY, He CT et al (2017) Comparative analysis of cadmium responsive microRNAs in roots of two Ipomoea aquatic Forsk. cultivars with different cadmium accumulation capacities. Plant Physiol Biochem 111:329–339

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki-Kitakawa N, Iizuka Y, Yonemoto T (2001) Cultures of Nicotiana tabacum Cells Immobilized in Calcium Alginate Gel Beads Coated with Cell-Free Gel Film 34(11):1431–1438

    Google Scholar 

  • Shimoda K, Kubota N, Hamada H, Kobayashi T, Hamada H, Shafi SM, Nakajima N (2009) Production of (2R,3S)-2-benzamidomethyl-3-hydroxybutanoates by immobilized plant cells of Parthenocissus tricuspidata. Biochem Insights 2:5–7

    Google Scholar 

  • Simoes AR, Culham A, Carine M (2015) Resolving the unresolved tribe: a molecular phylogenetic framework for the Merremieae (Convolvulaceae). Bot J Linn Soc 179(3):374–387

    Article  Google Scholar 

  • Singh PK, Tiwari SK, Rai N et al (2016) Antioxidant and phytochemical levels and their interrelation in stem and leaf extract of water spinach (Ipomea aquatica). Indian J Agric Sci 86(3):347–354

    CAS  Google Scholar 

  • Standardi A, Piccioni E (1998) Recent perspectives on synthetic seed technology using non-embryogenic in vitro-derived explants. Int J Plant Sci 159:968–978

    Google Scholar 

  • Stefanovic S, Krueger L, Olmstead RG (2002) Monophyly of the convolvulaceae and circumscription of their major lineages based on DNA sequences of multiple chloroplast loci. Am J Bot 89(9):1510–1522. https://doi.org/10.3732/ajb.89.9.1510

    Article  CAS  PubMed  Google Scholar 

  • Stephen LJ, Bopaiah AK (2014) An ideal media for the in-vitro propagation of Ipomoea palmata Forssk. [Synonym – Ipomoea cairica. L. Sweet] Convolulaceae. IOSR J Pharm Biol Sci 9(1):18–23. e-ISSN: 2278-3008, p-ISSN:2319-7676

    Google Scholar 

  • Synder GH, Morton JF, Genung WG (1981) Trials of Ipomoea aquatic nutritious vegetable with high protein and nitrate extraction potential. Proc Fla State Hortic Soc 94:230–235

    Google Scholar 

  • Tang SH, Sun M, Li KP (1994) Studies on artificial seed of Ipomoea aquatica Forsk. Acta Hortic Sin 21(1):71–75

    Google Scholar 

  • Tang L, Luo W-J, He Z-L et al (2018) Variations in cadmium and nitrate co-accumulation among water spinach genotypes and implications for screening safe genotypes for human consumption. Zhejiang Univ Sci B Biomed Biotechnol 19(2):147–115

    CAS  Google Scholar 

  • Taya M, Yoyama A, Kondo O et al (1989) Hairy root from pak-bung for peroxidase production. Plant Tissue Cult Lett 6:159–161

    Article  Google Scholar 

  • Taya M, Sato H, Kino-oka M et al (1994) Characterization of pak-bung green hairy roots cultivated under light irradiation. J Ferment Bioeng 78(1):42–48

    Article  Google Scholar 

  • Toleno DM, Durbin ML, Lundy KE, Clegg MT (2010) Extensive evolutionary rate variation in floral color determining genes in the genus Ipomoea. Plant Spec Biol 25:30–42

    Article  Google Scholar 

  • Tseng CF, Iwakami S, Mikajiri A et al (1992) Inhibition of in vitro prostaglandin and leukotriene biosynthesis by cinnamoyl-betaphenethylamine and N-acyldopamine derivatives. Chem Pharm Bull (Tokyo) 40(2):396–400

    Article  CAS  Google Scholar 

  • Umar K, Hassan LG, Dangoggo SM, Ladan MJ (2007) Nutritional composition of water spinach (Ipomoea aquatic Forsk.) leaves. J Appl Sci 7:803–809

    Article  CAS  Google Scholar 

  • Van TK, Madeira PT (1998) Random amplified polymorphic DNA analysis of water spinach (Ipomoea aquatica) in Florida. J Aquat Plant Manag 36:107–111

    Google Scholar 

  • Van Oostroom SJ (1940) The Convolvulaceae of Malaysia, III The genus Ipomoea. Blumea 3:481–582

    Google Scholar 

  • Varshney R, Song C, Saxena R et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246. https://doi.org/10.1038/nbt.2491

    Article  CAS  PubMed  Google Scholar 

  • Villegas M, Sommarin M, Brodelius PE (2000) Effects of sodium orthovanadate on benzophenanthridine alkaloid formation and distribution in cell suspension cultures of Eschscholtzia californica. Plant Physiol Biochem 38(3):233–241

    Google Scholar 

  • Wang J, Yuan J, Yang Z et al (2009) Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk). J Agric Food Chem 57:8942–8949

    Article  CAS  PubMed  Google Scholar 

  • West TP, Ravindra MB, Preece JE (2006) Encapsulation, cold storage, and growth of Hibiscus moscheutos nodal segments. Plant Cell Tissue Organ Cult 87:223–231

    Article  Google Scholar 

  • Westphal E (1993) Ipomoea aquatica Forsskal. In: Siemonsma JS, Piluek K (eds) Plant resources of South-East Asia No 8 Vegetables. Pudoc Scientific Publishers, Wageningen, pp 181–184

    Google Scholar 

  • Wichers HJ, Malingre TM, Hui Zing HJ (1983) The effect of some environmental factors on the production of L-DOPA by alginate-entrapped cells of Mucuna pruriens. Planta 158:482–483

    Article  CAS  PubMed  Google Scholar 

  • Wills RBH, Wong AWK, Scriven FM et al (1984) Nutrient composition of Chinese vegetables. J Agric Food Chem 32:413–416

    Article  CAS  Google Scholar 

  • Xiao Q, Wong MH, Huang L, Ye Z (2015) Effects of cultivars and water management on cadmium accumulation in water spinach (Ipomoea aquatica Forsk.). Plant Soil 391:33–49. https://doi.org/10.1007/s11104-015-2409-5

    Article  CAS  Google Scholar 

  • Xin J, Huang B, Yang Z et al (2010) Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures. J Hazard Mater 175:468–476

    Article  CAS  PubMed  Google Scholar 

  • Xin J, Huang B, Yang Z et al (2011) Variations in the accumulation of Cd and Pb exhibited by different water spinach cultivars. Acta Sci Nat Univ Sunyatseni 50:79

    CAS  Google Scholar 

  • Xin J, Huang B, Yang J, Yang Z, Yuan J, Mu Y (2012) Breeding For Pollution-Safe Cultiver Of Water Spinach to Minimize Cadmium Accumulation And Maximize Yield. Fresenius Environ Bull 21(7):1833–1840

    Google Scholar 

  • Xin J, Huang B, Liu A et al (2013a) Identification of hot pepper cultivars containing low Cd levels after growing on contaminated soil: uptake and redistribution to the edible plant parts. Plant Soil 373:415–425

    Article  CAS  Google Scholar 

  • Xin JL, Huang BF, Yang ZY et al (2013b) Comparison of cadmium subcellular distribution in different organs of two water spinach (Ipomoea aquatica Forsk.) cultivars. Plant Soil 372(1–2):431–444

    Article  CAS  Google Scholar 

  • Xu X, Pan S, Cheng S et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195. https://doi.org/10.1038/nature10158

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Fukuoka H, Arao T et al (2010) Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum. J Exp Bot 61:423–443

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Ghislain M, Huamán Z et al (1998) RAPD variation in sweetpotato (Ipomoea batatas (L.) Lam) cultivars from South America and Papua New Guinea. Genet Resour Crop Evol 45:271–277

    Article  Google Scholar 

  • Zhang Q, Achal V, Xu Y, Xiang WN (2014) Aquaculture wastewater quality improvement by water spinach (Ipomoea aquatica Forsskal) floating bed and ecological benefit assessment in ecological agriculture district. Aquac Eng 60:48–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moumita Gangopadhyay .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Research Institutes Relevant to Water Spinach

Institution

Specialization and research activities

Contact information and website

State Key Laboratory for Biocontrol and School of Life Sciences

Pollution-safe cultivar through traditional breeding, transcriptomics

Sun Yat-sen University, Guangzhou,510275, China

Website: http://www.sysu.edu.cn

Research and Instructional Farm of Horticulture, Department of Vegetable Science

Traditional and molecular breeding, agronomy

Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India

Website: http://www.igau.edu.in/

Laboratory of Aquatic Vegetables

Breeding

Yangzhou University, Yangzhou, 225009, P.R. China

Website: http://en.yzu.edu.cn/

Fengshan Tropical Horticultural Experiment Station

Germplasm maintenance, breeding

Taiwan Agricultural Research Institute, Fengshan, Kaohsiung, Taiwan

Website: https://www.tari.gov.tw/english/

Department of Botany

Phytochemistry

University of Allahabad, Allahabad, India

Website: http://www.allduniv.ac.in/

School of Environment and Life Science

Agronomy

University of Salford, Salford M5 4WT, United Kingdom

Website: https://www.salford.ac.uk/

College of Natural Resources

Plant breeding

University of California, Berkeley, CA 94720, USA

Website: https://www.berkeley.edu/

Humboldt-University of Berlin

Molecular biology, breeding

Institute of Horticultural Sciences

Lentzeallee 75, 14195 Berlin

Germany

Website: https://www.hu-berlin.de/

Department of Botany

Taxonomy

Dr. B. A. M. University, Aurangabad, (M.S.), India

Website: http://www.bamu.ac.in/

Department of Safety and Environmental Engineering

Breeding and molecular biology

Hunan Institute of Technology, Hengyang 421002, China

Website: http://www.hnit.edu.cn/

Key Laboratory of Tropical Agro-environment

Agronomy, nutrition

Ministry of Agriculture/South China Agricultural University, Guangzhou 510642, P.R.China

Website: http://english.scau.edu.cn/

Resources and Environment College

Pollution-safe cultivar through traditional breeding

Qingdao Agricultural University, Qingdao 266109, China

Website: https://www.qau.edu.cn/

College of Agronomy

Pollution-safe cultivar through traditional breeding

Hunan Agricultural University, Changsha 410128, China

Website: http://english.hunau.edu.cn/

Advanced Pharmacognosy Research Laboratory

Pharmacognosy and phytochemistry

Department of Pharmaceutical Technology, Jadavpur

University, Kolkata, 700032, India

Website: http://www.jaduniv.edu.in/

Department of Horticulture

Breeding, nutrition

Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252

Website: https://www.bckv.edu.in/

1.2 Appendix II: Genetic Resources of Water Spinach

Cultivar

Important traits

Cultivation location

Source

Ipomoea aquatica - Variant I

Broad leaved

Southeast Asia

Austin (2007)

I. aquatica - Variant II

Narrow leaved

Southeast Asia

Kaiser Hamid et al. (2011)

Kankoong beeasa

Dark-green leaves and stems and purple flowers

Java

Cornelis et al. (1985)

Kankoong nagree

Yellowish-green leaves, yellowish stems and white flowers

Java

Cornelis et al. (1985)

Pak Quat

White stems

Hong Kong

Pritesh Pandey and Madan Jha (2019)

Ching Quat

Green stems

Hong Kong

Pritesh Pandey and Madan Jha (2019)

cv. QLQ

Low shoot Cd cultivar

China

Xin et al. (2010)

cv. T308

High shoot Cd cultivar

China

Baifei Huang et al. (2014)

Red stem cultivar

Dryland cultivation

China

Austin (2007)

White stem cultivar

Wetland cultivation

China

Austin (2007)

Taiwan filiform-leaf I. aquatica

High phytoremediation potential

Taiwan

Quan-Ying Cai et al. (2008)

Hong Kong white-skin I. aquatica

Low phytoremediation potential

Hong Kong

Saikat Dewanjee et al. (2015)

cv. Taiwan 308

Non-Cadmium-PSC

Taiwan, China

Wang et al. (2009)

Xianggangdaye, Sannongbaigeng, and Jieyangbaigeng

Non-Cadmium-PSC

China

Wang et al. (2009)

cv. Daxingbaigu, Huifengqing, Qiangkunbaigu, Qiangkunqinggu, Shenniuliuye, and Xingtianqinggu

Cadmium-PSCs

China

Wang et al. (2009)

Thaiqinggengliuye water spinach (Liuye)

Non- Arsenic-PSCs

China

Dua et al. (2015)

Hong Kong chunbaidaye water spinach (Daye)

Arsenic-PSCs

Hong Kong, China

Wang et al. (2009)

cv. YQ

Low-Cd-Pb

China

Junliang Xin et al. (2012)

cv. GDB

High-Cd-Pb

China

Baifei Huang et al. (2012)

Salween

Small bamboo-like leaves and Suitable for the hot rainy season

Northern Thailand, Vietnam, southern China

Grubben (2004)

Liao

Bamboo-like leaves for the dry season

Northern Thailand, Vietnam, southern China

Grubben (2004)

Chinwin

Branching cultivar

Northern Thailand, Vietnam, southern China

Cornelis et al. (1985)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gangopadhyay, M., Das, A.K., Bandyopadhyay, S., Das, S. (2021). Water Spinach (Ipomoea aquatica Forsk.) Breeding. In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66969-0_5

Download citation

Publish with us

Policies and ethics