Skip to main content

Impact of Engineered Nanoparticles on Microbial Communities, Soil Health and Plants

  • Chapter
  • First Online:
Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems

Abstract

Today, nanoparticles (NPs) have received tremendous attention due to their unusual properties and multiple applications. Engineered nanoparticles (ENPs) are applied in medicine, industries, agriculture, space science, etc. Anthropogenic release of ENPs to the environment poses a potential hazard to soil, plants, and human health. Soil is a major repository of ENPs and its exposure modulates microbial diversity, soil properties, and plant growth. The effects of ENPs on soil result in many anomalies  on soil properties and plants. Soil enzymes such as dehydrogenase, urease, and phosphatase are highly affected by ENPs. ENPs exert toxic effects on multiple economically important crops and trigger severe oxidative stress in plants leading to cell death. Due to their unique size, ENPs penetrate plant tissues and translocate from one part to another. Also, uptake, translocation, and accumulation of ENPs in crops pose potential risk to animals and human beings. Thus, in the present scenario, it is necessary to explore the effects of different ENPs on soil physicochemical, microbial community, and plant growth parameters. In this chapter, we will briefly highlight the effects of different ENPs on soil, microbs, and plant responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Elsaad NI, Abdel Hameed RE (2019) Copper ferrite nanoparticles as nutritive supplement for cucumber plants grown under hydroponic system. J Plant Nutr 42(14):1645–1659

    Google Scholar 

  • Adams J, Wright M, Wagner H, Valiente J, Britt D, Anderson A (2017) Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol Biochem 110:108–117

    Article  CAS  Google Scholar 

  • Arnon DI (1965) Ferredoxin and photosynthesis. Science 149(3691):1460–1470

    Article  CAS  Google Scholar 

  • Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705

    Article  CAS  Google Scholar 

  • Asadishad B, Chahal S, Cianciarelli V, Zhou K, Tufenkji N (2017) Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: role of nanoparticle size and surface coating. Environ Sci Nano 4(4):907–918

    Article  CAS  Google Scholar 

  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32(5):577–584

    Article  CAS  Google Scholar 

  • Bao D, Oh ZG, Chen Z (2016) Characterization of silver nanoparticles internalized by Arabidopsis plants using single particle ICP-MS analysis. Front Plant Sci 7:32

    Article  Google Scholar 

  • Beddow J, Stolpe B, Cole P, Lead JR, Sapp M, Lyons BP, Colbeck I, Whitby C (2014) Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes. Environ Microbiol Rep 6(5):448–458

    Article  CAS  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87(7):1181–1200

    Article  CAS  Google Scholar 

  • Briat JF, Dubos C, Gaymard F (2015) Iron nutrition, biomass production, and plant product quality. Trends Plant Sci 20(1):33–40

    Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234

    Article  CAS  Google Scholar 

  • Cecchin I, Reddy KR, Thomé A, Tessaro EF, Schnaid F (2017) Nanobioremediation: Integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int Biodeterior Biodegrad 119:419–428

    Article  CAS  Google Scholar 

  • Chen G, Ma C, Mukherjee A, Musante C, Zhang J, White JC, Dhankher OP, Xing B (2016) Tannic acid alleviates bulk and nanoparticle Nd2O3 toxicity in pumpkin: a physiological and molecular response. Nanotoxicology 10(9):1243–1253

    Article  CAS  Google Scholar 

  • Chiang HH, Dandekar A (1995) Regulation of proline accumulation in Arabidopsis thaliana (L.) Heynh during development and in response to desiccation. Plant Cell Environ 18(11):1280–1290

    Google Scholar 

  • Conesa J (1995) Computer modeling of surfaces and defects on cerium dioxide. Surf Sci 339(3):337–352

    Article  CAS  Google Scholar 

  • Conway JR, Beaulieu AL, Beaulieu NL, Mazer SJ, Keller AA (2015) Environmental stresses increase photosynthetic disruption by metal oxide nanomaterials in a soil-grown plant. ACS Nano 9(12):11737–11749

    Article  CAS  Google Scholar 

  • Courtois P, Rorat A, Lemiere S, Guyoneaud R, Attard E, Levard C, Vandenbulcke F (2019) Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: A review of effects on microorganisms, plants and animals. Environ Pollut

    Google Scholar 

  • Da Costa M, Sharma P (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54(1):110–119

    Article  CAS  Google Scholar 

  • Darlington TK, Neigh AM, Spencer MT, Guyen OT, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28(6):1191–1199

    Article  CAS  Google Scholar 

  • Das CK, Srivastava G, Dubey A, Roy M, Jain S, Sethy NK, Saxena M, Harke S, Sarkar S, Misra K (2016) Nano-iron pyrite seed dressing: a sustainable intervention to reduce fertilizer consumption in vegetable (beetroot, carrot), spice (fenugreek), fodder (alfalfa), and oilseed (mustard, sesamum) crops. Nanotech Environ Eng 1(1):2

    Article  Google Scholar 

  • Debnath P, Mondal A, Sen K, Mishra D, Mondal NK (2020) Genotoxicity study of nano Al2O3, TiO2 and ZnO along with UV-B exposure: an Allium cepa root tip assay. Sci Total Environ 713:136592

    Article  CAS  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5(2):91

    Article  CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20(11):1140

    Article  CAS  Google Scholar 

  • Dietz K-J, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16(11):582–589

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Maxim IB, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14(9):1125

    Article  CAS  Google Scholar 

  • Dimkpa CO, Singh U, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC (2018) Exposure to weathered and fresh nanoparticle and ionic Zn in soil promotes grain yield and modulates nutrient acquisition in wheat (Triticum aestivum L.). J Agric Food Chem 66(37):9645–9656

    Google Scholar 

  • Dimkpa CO, White JC, Elmer WH, Gardea-Torresdey J (2017) Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. J Agric Food Chem 65(39):8552–8559

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Nair R, Giraldo JP, Prasad PVV (2018) Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. ACS Omega 3(10):14406–14416

    Article  CAS  Google Scholar 

  • Du W, Gardea-Torresdey JL, Xie Y, Yin Y, Zhu J, Zhang X, Ji R, Gu K, Peralta-Videa JR, Guo H (2017) Elevated CO2 levels modify TiO2 nanoparticle effects on rice and soil microbial communities. Sci Total Environ 578:408–416

    Article  CAS  Google Scholar 

  • Du W, Yang J, Peng Q, Liang X, Mao H (2019) Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: from toxicity and zinc biofortification. Chemosphere 227:109–116

    Article  CAS  Google Scholar 

  • Duran NdM, Savassa SM, Lima RGd, de Almeida E, Linhares FS, van Gestel CA, Pereira de Carvalho HW (2017) X-ray spectroscopy uncovering the effects of Cu based nanoparticle concentration and structure on Phaseolus vulgaris germination and seedling development. J Agric Food Chem 65(36):7874–7884

    Article  CAS  Google Scholar 

  • Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2013) Assessment of concentrations of nano and bulk iron oxide particles on early growth of wheat (Triticum aestivum L.). Annu Res Rev 752–761

    Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103(3):626–631

    Article  CAS  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC (2011) Solutions for a cultivated planet. Nature 478(7369):337–342

    Article  CAS  Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8(12)

    Google Scholar 

  • Gao J, Xu G, Qian H, Liu P, Zhao P, Hu Y (2013) Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63–70

    Google Scholar 

  • García-Gómez C, Obrador A, González D, Babín M, Fernández MD (2017) Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. Sci Total Environ 589:11–24

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48(5):2526–2540

    Article  CAS  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28(11):1091–1101

    Article  CAS  Google Scholar 

  • Ghoto K, Simon M, Shen Z-J, Gao G-F, Li P-F, Li H, Zheng H-L (2020) Physiological and root exudation response of maize seedlings to TiO2 and SiO2 nanoparticles exposure. Bio Nanosci 1–13

    Google Scholar 

  • González Linares M, Jia Y, Sunahara GI, Whalen JK (2020) Barley (Hordeum vulgare) seedling growth declines with increasing exposure to silver nanoparticles in biosolid-amended soils. Can J Soil Sci 100:1–9

    Article  CAS  Google Scholar 

  • Gorczyca A, Pociecha E, Kasprowicz M, Niemiec M (2015) Effect of nanosilver in wheat seedlings and Fusarium culmorum culture systems. Eur J Plant Pathol 142(2):251–261

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222

    Article  CAS  Google Scholar 

  • Hao Y, Xu B, Ma C, Shang J, Gu W, Li W, Hou T, Xiang Y, Cao W, Xing B (2019) Synthesis of novel mesoporous carbon nanoparticles and their phytotoxicity to rice (Oryza sativa L.). J Saudi Chem Soc 23(1):75–82

    Google Scholar 

  • Heckert EG, Karakoti AS, Seal S, Self WT (2008) The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29(18):2705–2709

    Article  CAS  Google Scholar 

  • Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. ACS Publications

    Google Scholar 

  • Holden PA, Schimel JP, Godwin HA (2014) Five reasons to use bacteria when assessing manufactured nanomaterial environmental hazards and fates. Curr Opin Biotechnol 27:73–78

    Article  CAS  Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105(1–3):269–279

    Article  CAS  Google Scholar 

  • Huang Y, Zhao L, Keller AA (2017) Interactions, transformations, and bioavailability of nano-copper exposed to root exudates. Environ Sci Technol 51(17):9774–9783

    Article  CAS  Google Scholar 

  • Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2016) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65(4):551–560

    Article  CAS  Google Scholar 

  • Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39(1):1–23

    Article  CAS  Google Scholar 

  • Jini D, Sharmila S (2020) Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity. Mater Today: Proceed 22:432–438

    CAS  Google Scholar 

  • Jośko I, Oleszczuk P, Futa B (2014) The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma 232:528–537

    Article  CAS  Google Scholar 

  • Kandeler F, Kampichler C, Horak O (1996) Influence of heavy metals on the functional diversity of soil microbial communities. Biol Fertil Soils 23(3):299–306

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids Surf B Biointerfaces 47(2):160–164

    Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanoparticle Res 15(6):1692

    Article  Google Scholar 

  • Kim S, Kim J, Lee I (2011) Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chem Ecol 27(1):49–55

    Article  CAS  Google Scholar 

  • Konate A, He X, Zhang Z, Ma Y, Zhang P, Alugongo GM, Rui Y (2017) Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability 9(5):790

    Article  CAS  Google Scholar 

  • Kowsalya E, MosaChristas K, Balashanmugam P, Rani JC (2019) Biocompatible silver nanoparticles/poly (vinyl alcohol) electrospun nanofibers for potential antimicrobial food packaging applications. Food Packag Shelf Life 21:100379

    Article  Google Scholar 

  • Kranjc E, Mazej D, Regvar M, Drobne D, Remškar M (2018) Foliar surface free energy affects platinum nanoparticle adhesion, uptake, and translocation from leaves to roots in arugula and escarole. Environ Sci Nano 5(2):520–532

    Article  CAS  Google Scholar 

  • Kumar A, Verma JP (2018) Does plant—microbe interaction confer stress tolerance in plants: a review? Microbiol res 207:41–52

    Google Scholar 

  • Kumar A, Singh S, Gaurav AK, Srivastava S, Verma JP (2020) Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants. Front Microbiol 11

    Google Scholar 

  • Kumar A, Singh S, Mukherjee A, Rastogi RP, Verma JP (2021) Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiol Res 242:126616

    Google Scholar 

  • Lahiani MH, Nima ZA, Villagarcia H, Biris AS, Khodakovskaya MV (2017) Assessment of effects of the long-term exposure of agricultural crops to carbon nanotubes. J Agric Food Chem 66(26):6654–6662

    Article  CAS  Google Scholar 

  • Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chem 86(5):491–499

    Google Scholar 

  • Lofts S, Criel P, Janssen CR, Lock K, McGrath SP, Oorts K, Rooney CP, Smolders E, Spurgeon DJ, Svendsen C (2013) Modelling the effects of copper on soil organisms and processes using the free ion approach: towards a multi-species toxicity model. Environ Pollut 178:244–253

    Article  CAS  Google Scholar 

  • López-Moreno ML, Avilés LL, Pérez NG, Irizarry BÁ, Perales O, Cedeno-Mattei Y, Román F (2016) Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci Total Environ 550:45–52

    Article  CAS  Google Scholar 

  • Luo J, Song Y, Liang J, Li J, Islam E, Li T (2020) Elevated CO2 mitigates the negative effect of CeO2 and Cr2O3 nanoparticles on soil bacterial communities by alteration of microbial carbon use. Environ Pollut 263:114–456

    Article  Google Scholar 

  • Lv J, Christie P, Zhang S (2019) Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ Sci Nano 6(1):41–59

    Article  CAS  Google Scholar 

  • Lv J, Zhang S, Luo L, Zhang J, Yang K, Christie P (2015) Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ Sci Nano 2(1):68–77

    Article  CAS  Google Scholar 

  • Ma C, White JC, Dhankher OP, Xing B (2015) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49(12):7109–7122

    Article  CAS  Google Scholar 

  • Ma R, Cm L, Judy JD, Unrine JM, Durenkamp M, Martin B, Jefferson B, Lowry GV (2014) Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ Sci Technol 48(1):104–112

    Article  CAS  Google Scholar 

  • Ma X, Wang Q, Rossi L, Zhang W (2016) Cerium oxide nanoparticles and bulk cerium oxide leading to different physiological and biochemical responses in Brassica rapa. Environ Sci Technol 50(13):6793–6802

    Article  CAS  Google Scholar 

  • Mahmoodzadeh H, Aghili R, Nabavi M (2013) Physiological effects of TiO2 nanoparticles on wheat (Triticum aestivum). Tech J Eng Appl Sci 3:1365–1370

    Google Scholar 

  • Matorin D, Todorenko D, Seifullina NK, Zayadan B, Rubin A (2013) Effect of silver nanoparticles on the parameters of chlorophyll fluorescence and P 700 reaction in the green alga Chlamydomonas reinhardtii. Microbiology 82(6):809–814

    Article  CAS  Google Scholar 

  • McCully M (1995) How do real roots work? (Some new views of root structure). Plant Physiol 109(1):1

    Article  CAS  Google Scholar 

  • Michels C, Yang Y, Moreira Soares H, Alvarez PJ (2015) Silver nanoparticles temporarily retard NO2−production without significantly affecting N2O release by Nitrosomonas europaea. Environ Toxicol Chem 34(10):2231–2235

    Article  CAS  Google Scholar 

  • Miller G, Pushnik J, Welkie G (1984) Iron chlorosis, a world wide problem, the relation of chlorophyll biosynthesis to iron. J Plant Nutr 7(1–5):1–22

    Article  CAS  Google Scholar 

  • Mingyu S, Fashui H, Chao L, Xiao W, Xiaoqing L, Liang C, Fengqing G, Fan Y, Zhongrui L (2007) Effects of nano-anatase TiO2 on absorption, distribution of light, and photoreduction activities of chloroplast membrane of spinach. Biol Trace Elem Res 118(2):120–130

    Article  CAS  Google Scholar 

  • Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46(17):9224–9239

    Article  CAS  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19

    Google Scholar 

  • Movafeghi A, Khataee A, Abedi M, Tarrahi R, Dadpour M, Vafaei F (2018) Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza: evaluation of growth parameters, pigment contents and antioxidant enzyme activities. JEnvS 64:130–138

    Google Scholar 

  • Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490(7419):254–257

    Article  CAS  Google Scholar 

  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6(1):132–138

    Google Scholar 

  • Nair PMG, Chung IM (2014) Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 112:105–113

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2014b) A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol Trace Elem Res 162 (1–3):342–352, Nandanapalli KR, Mudusu D, Lee S (2019) Functionalization of graphene layers and advancements in device applications. Carbon

    Google Scholar 

  • Nekrasova G, Ushakova O, Ermakov A, Uimin M, Byzov I (2011) Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ J Ecol 42(6):458

    Article  CAS  Google Scholar 

  • Noori A, White JC, Newman LA (2017) Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure. J Nanoparticle Res 19(2):66

    Article  CAS  Google Scholar 

  • Oades J (1993) The role of biology in the formation, stabilization and degradation of soil structure. In: Soil structure/soil biota interrelationships. Elsevier, pp 377–400

    Google Scholar 

  • Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol in Vitro 25(5):1097–1105

    Article  CAS  Google Scholar 

  • Peng C, Duan D, Xu C, Chen Y, Sun L, Zhang H, Yuan X, Zheng L, Yang Y, Yang J (2015) Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ Pollut 197:99–107

    Article  CAS  Google Scholar 

  • Peng C, Xu C, Liu Q, Sun L, Luo Y, Shi J (2017) Fate and transformation of CuO nanoparticles in the soil–rice system during the life cycle of rice plants. Environ Sci Technol 51(9):4907–4917

    Article  CAS  Google Scholar 

  • Perreault F, Samadani M, Dewez D (2014) Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 8(4):374–382

    Article  CAS  Google Scholar 

  • Peyrot C, Wilkinson KJ, Desrosiers M, Sauvé S (2014) Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ Toxicol Chem 33(1):115–125

    Article  CAS  Google Scholar 

  • Peyrot A (2015) Photodegradation of methyl orange using nanostructures synthesized by microwave irradiation: TiO2 nanotubes and Ag NPs

    Google Scholar 

  • Praveen A, Khan E, Perwez M, Sardar M, Gupta M (2018) Iron oxide nanoparticles as nano-adsorbents: a possible way to reduce arsenic phytotoxicity in Indian mustard plant (Brassica juncea L.). J Plant Growth Regul 37(2):612–624

    Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946

    Article  CAS  Google Scholar 

  • Rawat S, Pullagurala VL, Hernandez-Molina M, Sun Y, Niu G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2018) Impacts of copper oxide nanoparticles on bell pepper (Capsicum annum L.) plants: a full life cycle study. Environ Sci Nano 5(1):83–95

    Google Scholar 

  • Regier N, Cosio C, Von Moos N, Slaveykova VI (2015) Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere 128:56–61

    Article  CAS  Google Scholar 

  • Rico CM, Johnson MG, Marcus MA, Andersen CP (2017) Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure. Environ Sci Nano 4(3):700–711

    Google Scholar 

  • Rossi L, Sharifan H, Zhang W, Schwab AP, Ma X (2018) Mutual effects and in planta accumulation of co-existing cerium oxide nanoparticles and cadmium in hydroponically grown soybean (Glycine max (L.) Merr.). Environ Sci Nano 5(1):150–157

    Google Scholar 

  • Rui M, Ma C, Tang X, Yang J, Jiang F, Pan Y, Xiang Z, Hao Y, Rui Y, Cao W (2017) Phytotoxicity of silver nanoparticles to peanut (Arachis hypogaea L.): physiological responses and food safety. ACS Sustain Chem Eng 5(8):6557–6567

    Google Scholar 

  • Salehi H, Chehregani A, Lucini L, Majd A, Gholami M (2018) Morphological, proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application. Sci Tot Environ 616:1540–1551

    Article  CAS  Google Scholar 

  • Sarmast MK, Salehi H (2016) Silver nanoparticles: an influential element in plant nanobiotechnology. Mol Biotechnol 58(7):441–449

    Article  CAS  Google Scholar 

  • Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2016) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–critical review. Nanotoxicology 10(3):257–278

    Article  CAS  Google Scholar 

  • Schymura S, Fricke T, Hildebrand H, Franke K (2017) Elucidating the role of dissolution in CeO2 nanoparticle plant uptake by smart radiolabeling. Angew Chem Int Ed 56(26):7411–7414

    Article  CAS  Google Scholar 

  • Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Mizukami H, Bianco A, Baba Y (2011) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5(1):493–499

    Article  CAS  Google Scholar 

  • Shah K, Sharma PK, Nandi I, Singh N (2014) Water sustainability: reforming water management in new global era of climate change. Environ Sci Pollut Res 21(19)11603–11604

    Google Scholar 

  • Sharma PK, Raghubanshi A, Shah K (2020a) Examining dye degradation and antibacterial properties of organically induced α-MoO3 nanoparticles, their uptake and phytotoxicity in rice seedlings. Environ Nanotechnol Monit Manag 100315

    Google Scholar 

  • Sharma PK, Raghubanshi AS, Shah K (2020b) Examining the uptake and bioaccumulation of molybdenum nanoparticles and their effect on antioxidant activities in growing rice seedlings. Environ Sci Pollut Res 1–15

    Google Scholar 

  • Shenashen M, Derbalah A, Hamza A, Mohamed A, El Safty S (2017) Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot disease of tomato caused by Fusarium oxysporium. Pest Manag Sci 73(6):1121–1126

    Article  CAS  Google Scholar 

  • Shin YJ, Kwak JI, An YJ (2012) Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88(4):524–529

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11(1):98

    Article  CAS  Google Scholar 

  • Silva S, de Oliveira JMPF, Dias MC, Silva AM, Santos C (2019) Antioxidant mechanisms to counteract TiO2-nanoparticles toxicity in wheat leaves and roots are organ dependent. J Hazard Mater 380:120889

    Article  CAS  Google Scholar 

  • Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22(18):13710–13723

    Article  CAS  Google Scholar 

  • Sindhura KS, Prasad TNVKV, Selvam PP, Hussain OM (2014) Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzymes. Appl Nanosci 4(7):819–827

    Article  CAS  Google Scholar 

  • Singh RP, Ramarao P (2012) Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett 213(2):249–259

    Article  CAS  Google Scholar 

  • Speranza A, Crinelli R, Scoccianti V, Taddei AR, Iacobucci M, Bhattacharya P, Ke PC (2013) In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environ Pollut 179:258–267

    Article  CAS  Google Scholar 

  • Srivastava A, Rao D (2014) Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes. Eur Chem Bull 3(5):502–504

    Google Scholar 

  • Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5(2):463–474

    Article  CAS  Google Scholar 

  • Syu Y-y, Hung J-H, Chen J-C, Chuang H-w (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64

    Article  CAS  Google Scholar 

  • Terry N, Low G (1982) Leaf chlorophyll content and its relation to the intracellular localization of iron. J Plant Nutr 5(4–7):301–310

    Article  CAS  Google Scholar 

  • Tighe-Neira R, Carmora E, Recio G, Nunes-Nesi A, Reyes-Diaz M, Alberdi M, Rengel Z, Inostroza-Blancheteau C (2018) Metallic nanoparticles influence the structure and function of the photosynthetic apparatus in plants. Plant Physiol Biochem 130:408–417

    Article  CAS  Google Scholar 

  • Tombuloglu H, Slimani Y, Tombuloglu G, Almessiere M, Baykal A, Ercan I, Sozeri H (2019) Tracking of NiFe2O4 nanoparticles in barley (Hordeum vulgare L.) and their impact on plant growth, biomass, pigmentation, catalase activity, and mineral uptake. Environ Nanotechnol Monit Manag 11:100223

    Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC (2017a) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  CAS  Google Scholar 

  • Tripathi KM, Bhati A, Singh A, Sonker AK, Sarkar S, Sonkar SK (2017b) Sustainable changes in the contents of metallic micronutrients in first generation gram seeds imposed by carbon nano-onions: life cycle seed to seed study. ACS Sustain Chem Eng 5(4):2906–2916

    Article  CAS  Google Scholar 

  • WWAP (2012) Facts and figures from the United Nations World Water Development Report 4 (WWDR4). United Nations World Water Assessment Programme, UNESCO-WWAP

    Google Scholar 

  • Vanti GL, Nargund VB, Vanarchi R, Kurjogi M, Mulla SI, Tubaki S, Patil RR (2019) Synthesis of Gossypium hirsutum-derived silver nanoparticles and their antibacterial efficacy against plant pathogens. Appl Organomet Chem 33(1):e4630

    Article  CAS  Google Scholar 

  • Wang S, Wang F, Gao S, Wang X (2016) Heavy metal accumulation in different rice cultivars as influenced by foliar application of nano-silicon. Water, Air, Soil Pollut 227(7):228

    Article  CAS  Google Scholar 

  • Wang Y, Wang S, Xu M, Xiao L, Dai Z, Li J (2019) The impacts of γ-Fe2O3 and Fe2O4 nanoparticles on the physiology and fruit quality of muskmelon (Cucumis melo) plants. Environ Pollut 249:1011–1018

    Article  CAS  Google Scholar 

  • Xiao L, Wang S, Yang D, Zou Z, Li J (2019) Physiological Effects of MgO and ZnO Nanoparticles on the Citrus maxima. J Wuhan Univ Technol Ed 34(1):243–253

    Article  CAS  Google Scholar 

  • Xiong T, Dumat C, Dappe V, Vezin H, Schreck E, Shahid M, Pierart A, Sobanska S (2017) Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environ Sci Technol 51(9):5242–5251

    Article  CAS  Google Scholar 

  • Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33

    Article  CAS  Google Scholar 

  • Xue W, Han Y, Tan J, Wang Y, Wang G, Wang H (2017) Effects of nanochitin on the enhancement of the grain yield and quality of winter wheat. J Agri F Chem 66(26):6637–6645

    Article  CAS  Google Scholar 

  • Yang J, Jiang F, Ma C, Rui Y, Rui M, Adeel M, Cao W, Xing B (2018) Alteration of crop yield and quality of wheat upon exposure to silver nanoparticles in a life cycle study. J Agri F Chem 66(11):2589–2597

    Article  CAS  Google Scholar 

  • You T, Liu D, Chen J, Yang Z, Dou R, Gao X, Wang L (2018) Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J Soil sediment 18(1):211–221

    Google Scholar 

  • Zhang H, Yue M, Zheng X, Xie C, Zhou H, Li L (2017a) Physiological effects of single-and multi-walled carbon nanotubes on rice seedlings. IEEE Trans NanoBiosci 16(7):563–570

    Article  Google Scholar 

  • Zhang P, Ma Y, Liu S, Wang G, Zhang J, He X, Zhang J, Rui Y, Zhang Z (2017b) Phytotoxicity, uptake and transformation of nano-CeO2 in sand cultured romaine lettuce. Environ Pollut 220:1400–1408

    Article  CAS  Google Scholar 

  • Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42(7):3127–3171

    Article  CAS  Google Scholar 

  • Zhang W-x (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3–4):323–332

    Article  CAS  Google Scholar 

  • Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR, Tang X, Niu G, Jin L, Varela-Ramirez A (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6(11):9615–9622

    Article  CAS  Google Scholar 

  • Zhao Q, Ma C, White JC, Dhankher OP, Zhang X, Zhang S, Xing B (2017) Quantitative evaluation of multi-wall carbon nanotube uptake by terrestrial plants. Carbon 114:661–670

    Article  CAS  Google Scholar 

  • Zhou D, Jin S, Li L, Wang Y, Weng N (2011) Quantifying the adsorption and uptake of CuO nanoparticles by wheat root based on chemical extractions. JEnvS 23(11):1852–1857

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Sharma, P.K., Singh, S., Verma, J.P. (2021). Impact of Engineered Nanoparticles on Microbial Communities, Soil Health and Plants. In: Singh, P., Singh, R., Verma, P., Bhadouria, R., Kumar, A., Kaushik, M. (eds) Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-66956-0_14

Download citation

Publish with us

Policies and ethics