Skip to main content

Light Scattering, Absorption, Extinction, and Propagation in the Terrestrial Atmosphere

  • Chapter
  • First Online:
Foundations of Atmospheric Remote Sensing

Abstract

Radiative transfer is the physical phenomenon of energy transfer in the form of electromagnetic radiation, while the radiative transfer equation describes this phenomenon mathematically. The radiative transfer theory found its applications in astrophysics, atmospheric physics and engineering sciences. In atmospheric remote sensing, it is the basic for the so-called forward models which are used to simulate the measurements for a given set of atmospheric parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The addition theorem can be used in the following form: \(P_{n}\left( \cos \varTheta \right) =P_{n}\left( \mu \right) P_{n}\left( \mu '\right) +2\sum _{m=1}^{n}\frac{\left( l-m\right) !}{\left( l+m\right) !}P_{n}^{m}\left( \mu \right) P_{n}^{m}\left( \mu '\right) \cos m\left( \varphi -\varphi '\right) \) , which is equivalent to Eq. (3.144).

References

  1. O. Chwolson, Grundzüge einer matimatischen Theorie der inneren Diffusion des Licht. Bull. Acad. Imp. Sci. St. Petersbourg 33, 221–256 (1889). [in German]

    Google Scholar 

  2. E. Lommel, Die Photometric der diffusen Zuruckwerfung. Sitzber. Acad. Wissensch. Munchen 17, 95–124 (1887). [in German]

    Google Scholar 

  3. A. Schuster, The influence of radiation of the transmission of heat. Phil.Mag. 5, 243–257 (1903)

    Google Scholar 

  4. A. Schuster, Radiation through a foggy atmosphere. The Astrophysical Journal 21, 1 (1905). https://doi.org/10.1086/141186

  5. K. Schwarzschild, Über das Gleichgewicht der Sonnenatmosphäre. Nachr. Konig. Gesel. der Wiss., Gottingen 1, 41–53 (1906). [in German]

    Google Scholar 

  6. E.A. Milne, The reflection effect in eclipsing binaries. Monthly Notices of the Royal Astronomical Society 87(1), 43–55 (1926). https://doi.org/10.1093/mnras/87.1.43

  7. V. Ambartsumian, On the problem of diffuse reflection of light. J. Phys. USSR 8, 65–75 (1944). [in Russian]

    Google Scholar 

  8. V. Sobolev, The transfer of radiant energy in the atmospheres of stars and planets. Moscow: GITTL (1956). [in Russian]

    Google Scholar 

  9. S. Chandrasekhar, Radiative trasnfer. Dover publications, inc. New York (1950)

    Google Scholar 

  10. G. Rozenberg, Vector-parameter of stokes (matrix methods for accounting for radiation polarization in the ray optics approximation). Uspekhi Fizicheskih Nauk 56(5), 77–110 (1955). https://doi.org/10.3367/ufnr.0056.195505c.0077. [in Russian]

  11. Y. Kravtsov, L. Apresyan, IV Radiative transfer: New aspects of the old theory. in Progress in Optics, pp. 179–244. Elsevier (1996). https://doi.org/10.1016/s0079-6638(08)70315-9

  12. V. Afanas’ev, V. Budak, D. Efremenko, P. Kaplya, Application of the photometric theory of the radiance field in the problems of electron scattering. Light & Engineering pp. 88–96 (2019). https://doi.org/10.33383/2018-034

  13. Y.N. Barabanenkov, Y.A. Kravtsov, V. Ozrin, A. Saichev II enhanced backscattering in optics.in Progress in Optics, pp. 65–197. Elsevier (1991). https://doi.org/10.1016/s0079-6638(08)70006-4

  14. E. Akkermans, P.E. Wolf, R. Maynard, Coherent backscattering of light by disordered media: Analysis of the peak line shape. Physical Review Letters 56(14), 1471–1474 (1986). https://doi.org/10.1103/physrevlett.56.1471

  15. G. Thomas, K. Stamnes, Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press (1999). https://doi.org/10.1017/cbo9780511613470

  16. A. Peraiah, An Introduction to Radiative Transfer: Methods and Applications in Astrophysics. Cambridge University Press (2001)

    Google Scholar 

  17. E. Zege, A. Ivanov, I. Katsev, Image Transfer Through a Scattering Medium. Springer Berlin Heidelberg (1991). https://doi.org/10.1007/978-3-642-75286-5

  18. G.C. Pomraning, The Equations of Radiation Hydrodynamics. Oxford: Pergamon Press (1973)

    Google Scholar 

  19. E. Yanovitskij, Light Scattering in Inhomogeneous Atmospheres. Springer Berlin Heidelberg (1997). https://doi.org/10.1007/978-3-642-60465-2

  20. J. Poynting, XV. On the transfer of energy in the electromagnetic field. Philosophical Transactions of the Royal Society of London 175, 343–361 (1884). https://doi.org/10.1098/rstl.1884.0016

  21. E. Wolf, Coherence and radiometry. Journal of the Optical Society of America 68(1), 6 (1978). https://doi.org/10.1364/josa.68.000006

  22. A. Ishimaru, Wave Propagation and Scattering in Random Media. Elsevier (1978). https://doi.org/10.1016/c2013-0-10906-3

  23. M. Mishchenko, 125 years of radiative transfer: Enduring triumphs and persisting misconceptions. in R. Cahalan, J. Fischer (eds.) Radiation Processes in the Atmosphere and Ocean (IRS2012): Proceedings of the International Radiation Symposium (IRC/IAMAS), 6-10 Aug. 2012, Berlin, AIP Conference Proceedings, vol. 1531, pp. 11–18. AIP, Melville, N.Y. (2013)

    Google Scholar 

  24. M. Mishchenko, Multiple scattering by particles embedded in an absorbing medium. 1. Foldy–Lax equations, order-of-scattering expansion, and coherent field. Optics Express 16(3), 2288 (2008). https://doi.org/10.1364/oe.16.002288

  25. A. Doicu, M. Mishchenko, Overview of methods for deriving the radiative transfer theory from the Maxwell equations. I: Approach based on the far-field Foldy equations. Journal of Quantitative Spectroscopy and Radiative Transfer 220, 123–139 (2018). https://doi.org/10.1016/j.jqsrt.2018.09.004

  26. A. Doicu, M. Mishchenko, An overview of methods for deriving the radiative transfer theory from the Maxwell equations. II: Approach based on the Dyson and Bethe-Salpeter equations. Journal of Quantitative Spectroscopy and Radiative Transfer 224, 25–36 (2019). https://doi.org/10.1016/j.jqsrt.2018.10.032

  27. L. Foldy, The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Physical Review 67(3-4), 107–119 (1945). https://doi.org/10.1103/physrev.67.107

  28. M. Lax, Multiple scattering of waves. Reviews of Modern Physics 23(4), 287–310 (1951). https://doi.org/10.1103/revmodphys.23.287

  29. M. Mishchenko, Electromagnetic Scattering by Particles and Particle Groups: An Introduction. Cambridge (2014)

    Google Scholar 

  30. V. Twersky, On propagation in random media of discrete scatterers. Proc Symp Appl Math 16, 84–116 (1964)

    Google Scholar 

  31. L. Dolin, Scattering of light in a layer of turbid medium. Izv. VUZ Radiofiz 7(2), 380–382 (1964)

    Google Scholar 

  32. L. Apresyan, Y. Kravtsov, Radiation Transfer: Statistical and Wave Aspects. Gordon and Breach, London, NY (1996)

    Google Scholar 

  33. M. Kuzmina, L. Bass, O. Nikolaeva, Polarized radiative transfer in optically active light scattering media. in Springer Series in Light Scattering, pp. 1–53. Springer International Publishing (2017). https://doi.org/10.1007/978-3-319-70808-9_1

  34. J. Aizenberg, V. Budak, The science of light engineering, fields of application and theoretical foundations. Light & Engineering pp. 4–6 (2018). https://doi.org/10.33383/2018-045

  35. J. Aizenberg, V. Budak, Light science is not only science of lighting: theoretical bases and application area. in Proceedings of the 29th Quadrennial Session of the CIE. International Commission on Illumination, CIE (2019). https://doi.org/10.25039/x46.2019.po120

  36. G. Konnen, Polarized Light in Nature. Cambridge University Press (1985)

    Google Scholar 

  37. T. Ramskou, Solstenen. Skalk 2, 16–17 (1967)

    Google Scholar 

  38. C. Roslund, C. Beckman, Disputing Viking navigation by polarized skylight. Applied Optics 33(21), 4754 (1994). https://doi.org/10.1364/ao.33.004754

  39. E. Bartholin, Experiments with the double refracting Iceland crystal which led to the discovery of a marvelous and strange refraction. Copenhagen, Denmark (1669)

    Google Scholar 

  40. É.L. Malus, Mémoire sur la mesure du pouvoir réfringent des corps opaques. Nouveau bulletin des sciences de la Société philomathique de Paris 1, 77–81 (1807). [in French]

    Google Scholar 

  41. J. Tyndall, IV. On the blue colour of the sky, the polarization of skylight, and on the polarization of light by cloudy matter generally. Proceedings of the Royal Society of London 17, 223–233 (1869). https://doi.org/10.1098/rspl.1868.0033

  42. D. Brewster, On the laws which regulate the polarisation of light by reflexion from transparent bodies. Philosophical Transactions of the Royal Society of London 105, 125–159 (1815).https://doi.org/10.1098/rstl.1815.0010

  43. A. Fresnel, Note sur le calcul des teintes que la polarisation développe dans les lames cristallisées. Annales de Chimie et de Physique 17, 102–12 (1821). [in French]

    Google Scholar 

  44. G. Stokes, On the composition and resolution of streams of polarized light from different sources. Transactions of the Cambridge Philosophical Society 9, 399–416 (1852)

    Google Scholar 

  45. C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles. Wiley (1998). https://doi.org/10.1002/9783527618156

  46. M. Born, E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Sixth Edition. Pergamon Press, Oxford (1993)

    Google Scholar 

  47. A.Z. Dolginov, Y. Gnedin, N. Silant’Ev, Propagation and Polarization of Radiation in Cosmic Media. Gordon & Breach Science Pub (1995)

    Google Scholar 

  48. F. Fedorov, Optics of Anisotropic media. Academy of Sciences of the Belarus Soviet Socialist Republic, Minsk (1958)

    Google Scholar 

  49. A.F. Konstantinova, A.Y. Tronin, B.V. Nabatov, Developments of Fedorov covariant methods and applications to optically active crystals. in Advances in Complex Electromagnetic Materials, pp. 19–32. Springer Netherlands (1997). https://doi.org/10.1007/978-94-011-5734-6_2

  50. A. Kokhanovsky, The tensor radiative transfer equation. Journal of Physics A: Mathematical and General 33(22), 4121–4128 (2000). https://doi.org/10.1088/0305-4470/33/22/314

  51. G. Goldstein, Polarized Light. CRC Press (2003)

    Google Scholar 

  52. I. Kuščer, M. Ribarič, Matrix formalism in the theory of diffusion of light. Optica Acta: International Journal of Optics 6(1), 42–51 (1959). https://doi.org/10.1080/713826264

  53. Z. Sekera, Scattering matrices and reciprocity relationships for various representations of the state of polarization. Journal of the Optical Society of America 56(12), 1732 (1966). https://doi.org/10.1364/josa.56.001732

  54. H. van de Hulst, Light scattering by small particles. Dover Publications, Inc. New York (1957)

    Google Scholar 

  55. A.M. Legendre, Recherches sur l’attraction des sphéroïdes homogènes. Mémoires de Mathématiques et de Physique, présentés à l’Académie Royale des Sciences, par divers savans, et lus dans ses Assemblées X, 411–435 (1785). [in French]

    Google Scholar 

  56. J. Dave, B. Armstrong, Computations of high-order associated legendre polynomials. Journal of Quantitative Spectroscopy and Radiative Transfer 10(6), 557–562 (1970). https://doi.org/10.1016/0022-4073(70)90073-7

  57. B. Hapke, Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press (2009). https://doi.org/10.1017/cbo9781139025683

  58. V. Sobolev, Light Scattering in Planetary Atmospheres (Pergamon Press, 1975)

    Google Scholar 

  59. L. Henyey, J. Greenstein, Diffuse radiation in the galaxy. Astrophys J 93, 70–83 (1941)

    Google Scholar 

  60. W. Cornette, J. Shanks, Physically reasonable analytic expression for the single-scattering phase function. Applied Optics 31(16), 3152 (1992). https://doi.org/10.1364/ao.31.003152

  61. H. Kagiwada, R. Kalaba, RAND Report RM-5537-PR RAND Corporation. Santa Monica, California (1967)

    Google Scholar 

  62. G. Hunt, A review of computational techniques for analysing the transfer of radiation through a model cloudy atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer 11(6), 655–690 (1971). https://doi.org/10.1016/0022-4073(71)90046-x

  63. M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles. New York (2004)

    Google Scholar 

  64. J. Hovenier, The polarization of light scattered by small particles: A personal review. Journal of Quantitative Spectroscopy and Radiative Transfer 113(18), 2280–2291 (2012). https://doi.org/10.1016/j.jqsrt.2012.03.029

  65. V.P. Budak, S.V. Korkin, The aerosol influence upon the polarization state of the atmosphere solar radiation. International Journal of Remote Sensing 29(9), 2469–2506 (2008). https://doi.org/10.1080/01431160701767542

  66. R. Garcia, C. Siewert, A generalized spherical harmonics solution for radiative transfer models that include polarization effects. Journal of Quantitative Spectroscopy and Radiative Transfer 36(5), 401–423 (1986). https://doi.org/10.1016/0022-4073(86)90097-x

  67. J. Lenoble, M. Herman, J. Deuzé, B. Lafrance, R. Santer, D. Tanré, A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols. Journal of Quantitative Spectroscopy and Radiative Transfer 107(3), 479–507 (2007). https://doi.org/10.1016/j.jqsrt.2007.03.010

  68. G. Mie, Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen der Physik 330(3), 377–445 (1908). https://doi.org/10.1002/andp.19083300302. [in German]

  69. J. Hansen, L. Travis, Light scattering in planetary atmospheres. Space Science Reviews 16(4), 527–610 (1974). https://doi.org/10.1007/bf00168069

  70. Waterman, P.: Matrix formulation of electromagnetic scattering. Proceedings of the IEEE 53(8), 805–812 (1965). https://doi.org/10.1109/proc.1965.4058

  71. M. Mishchenko, L. Travis, D. Mackowski, T-matrix computations of light scattering by nonspherical particles: A review. Journal of Quantitative Spectroscopy and Radiative Transfer 55(5), 535–575 (1996). https://doi.org/10.1016/0022-4073(96)00002-7

  72. T. Rother, Sound Scattering on Spherical Objects. Springer International Publishing (2020). https://doi.org/10.1007/978-3-030-36448-9

  73. A. Doicu, A. Vasilyeva, D. Efremenko, C. Wirth, T. Wriedt, A light scattering model for total internal reflection microscopy of geometrically anisotropic particles. Journal of Modern Optics 66(10), 1139–1151 (2019). https://doi.org/10.1080/09500340.2019.1605005

  74. W.M. Grundy, S. Douté, B. Schmitt, A Monte Carlo ray-tracing model for scattering and polarization by large particles with complex shapes. Journal of Geophysical Research: Planets 105(E12), 29291–29314 (2000). https://doi.org/10.1029/2000je001276

  75. P. Yang, K. Liou, K. Wyser, D. Mitchell, Parameterization of the scattering and absorption properties of individual ice crystals. Journal of Geophysical Research: Atmospheres 105(D4), 4699–4718 (2000). https://doi.org/10.1029/1999jd900755

  76. P. Yang, K. Liou, Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. Journal of the Optical Society of America A 13(10), 2072 (1996). https://doi.org/10.1364/josaa.13.002072

  77. H. DeVoe, Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. The Journal of Chemical Physics 41(2), 393–400 (1964). https://doi.org/10.1063/1.1725879

  78. M. Yurkin, A. Hoekstra, The discrete dipole approximation: An overview and recent developments. Journal of Quantitative Spectroscopy and Radiative Transfer 106(1-3), 558–589 (2007). https://doi.org/10.1016/j.jqsrt.2007.01.034

  79. B. Bodhaine, N. Wood, E. Dutton, J. Slusser, On Rayleigh optical depth calculations. Journal of Atmospheric and Oceanic Technology 16(11), 1854–1861 (1999). https://doi.org/10.1175/1520-0426(1999)016<1854:orodc>2.0.co;2

  80. D. Bates, Rayleigh scattering by air. Planetary and Space Science 32(6), 785 – 790 (1984). https://doi.org/10.1016/0032-0633(84)90102-8

  81. A. Bucholtz, Rayleigh-scattering calculations for the terrestrial atmosphere. Applied Optics 34(15), 2765 (1995). https://doi.org/10.1364/ao.34.002765

  82. E. Dutton, P. Reddy, S. Ryan, J. DeLuisi, Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992. Journal of Geophysical Research 99(D4), 8295 (1994). https://doi.org/10.1029/93jd03520

  83. V. Rozanov, A. Rozanov, A. Kokhanovsky, J. Burrows, Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN. Journal of Quantitative Spectroscopy and Radiative Transfer 133, 13–71 (2014). https://doi.org/10.1016/j.jqsrt.2013.07.004

  84. A. Young, Rayleigh scattering. Applied Optics 20(4), 533 (1981). https://doi.org/10.1364/ao.20.000533

  85. V. Rozanov, M. Vountas, Radiative transfer equation accounting for rotational Raman scattering and its solution by the discrete-ordinates method. Journal of Quantitative Spectroscopy and Radiative Transfer 133, 603–618 (2014). https://doi.org/10.1016/j.jqsrt.2013.09.024

  86. R. Spurr, J. de Haan, R. van Oss, A. Vasilkov, Discrete-ordinate radiative transfer in a stratified medium with first-order rotational Raman scattering. Journal of Quantitative Spectroscopy and Radiative Transfer 109(3), 404–425 (2008). https://doi.org/10.1016/j.jqsrt.2007.08.011

  87. P. Debye, Der Lichtdruck auf Kugeln von beliebigem Material. Annalen der Physik 335(11), 57–136 (1909). https://doi.org/10.1002/andp.19093351103. [in German]

  88. H.M. Nussenzveig, W.J. Wiscombe, Efficiency factors in Mie scattering. Physical Review Letters 45(18), 1490–1494 (1980). https://doi.org/10.1103/physrevlett.45.1490

  89. A. Fresnel, Mémoire sur la loi des modifications que la réflexion imprime á la lumiére polarisée ("memoir on the law of the modifications that reflection impresses on polarized light") (1823). Read 7 January 1823; reprinted in Fresnel, 1866-70, vol. 1, pp. 767–799 (full text, published 1831), pp. 753–762 (extract, published 1823)

    Google Scholar 

  90. K.S. Shifrin, Scattering of Light in a Turbid Medium. NASA, Washington, DC (1968)

    Google Scholar 

  91. A. Kokhanovsky, E. Zege, Local optical parameters of spherical polydispersions: simple approximations. Applied Optics 34(24), 5513 (1995). https://doi.org/10.1364/ao.34.005513

  92. A. Kokhanovsky, A. Macke, Integral light-scattering and absorption characteristics of large, nonspherical particles. Applied Optics 36(33), 8785 (1997). https://doi.org/10.1364/ao.36.008785

  93. Y. Timofeyev, A. Vasil’ev, Theoretical fundamentals of Atmospheric Optics. Cambridge (2008)

    Google Scholar 

  94. W.G. Rees, Physical Principles of Remote Sensing. Cambridge University Press (2012). https://doi.org/10.1017/cbo9781139017411

  95. G. Peach Theory of the pressure broadening and shift of spectral lines. Advances in Physics 30(3), 367–474 (1981). https://doi.org/10.1080/00018738100101467

  96. N. Ngo, D. Lisak, H. Tran, J.M. Hartmann, An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes. Journal of Quantitative Spectroscopy and Radiative Transfer 129, 89–100 (2013). https://doi.org/10.1016/j.jqsrt.2013.05.034

  97. F. Schreier, S. Gimeno García, P. Hochstaffl, S. Städt, Py4cats –PYthon for computational Atmospheric spectroscopy. Atmosphere 10(5), 262 (2019). https://doi.org/10.3390/atmos10050262

  98. R. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, J. Wilzewski, HITRAN application programming interface (HAPI): A comprehensive approach to working with spectroscopic data. Journal of Quantitative Spectroscopy and Radiative Transfer 177, 15–30 (2016). https://doi.org/10.1016/j.jqsrt.2016.03.005

  99. K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, J. Burrows, Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region. Journal of Photochemistry and Photobiology A: Chemistry 157(2-3), 167–184 (2003). https://doi.org/10.1016/s1010-6030(03)00062-5

  100. C.L. Walthall, J.M. Norman, J.M. Welles, G. Campbell, B.L. Blad, Simple equation to approximate the bidirectional reflectance from vegetative canopies and bare soil surfaces. Applied Optics 24(3), 383 (1985). https://doi.org/10.1364/ao.24.000383

  101. W. Wanner, X. Li, A.H. Strahler, On the derivation of kernels for kernel-driven models of bidirectional reflectance. Journal of Geophysical Research 100(D10), 21077 (1995). https://doi.org/10.1029/95jd02371

  102. J.L. Roujean, M. Leroy, P.Y. Deschamps, A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. Journal of Geophysical Research 97(D18), 20455 (1992). https://doi.org/10.1029/92jd01411

  103. H. Rahman, B. Pinty, M. Verstraete, Coupled surface-atmosphere reflectance (CSAR) model: 2. semiempirical surface model usable with NOAA advanced very high resolution radiometer data. Journal of Geophysical Research 98(D11), 20791 (1993). https://doi.org/10.1029/93jd02072

  104. A.A. Kokhanovsky, F.M. Breon, Validation of an analytical snow BRDF model using PARASOL multi-angular and multispectral observations. IEEE Geoscience and Remote Sensing Letters 9(5), 928–932 (2012). https://doi.org/10.1109/lgrs.2012.2185775

  105. X. Li, A.H. Strahler, Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing. IEEE Transactions on Geoscience and Remote Sensing 30(2), 276–292 (1992)

    Google Scholar 

  106. B. Hapke, Scattering and diffraction of light by particles in planetary regoliths. Journal of Quantitative Spectroscopy and Radiative Transfer 61(5), 565–581 (1999). https://doi.org/10.1016/s0022-4073(98)00042-9

  107. J. Chowdhary, P.W. Zhai, E. Boss, H. Dierssen, R. Frouin, A. Ibrahim, Z. Lee, L. Remer, M. Twardowski, F. Xu, X. Zhang, M. Ottaviani, W. Espinosa, D. Ramon, Modeling atmosphere-ocean radiative transfer: A PACE mission perspective. Frontiers in Earth Science 7 (2019). https://doi.org/10.3389/feart.2019.00100

  108. C. Cox, W. Munk, Measurement of the roughness of the sea surface from photographs of the sun’s glitter. Journal of the Optical Society of America 44(11), 838 (1954). https://doi.org/10.1364/josa.44.000838

  109. I. Gelfand, Z. Sapiro, Representations of the group of rotation in three-dimensional space and their applications. Amer. Math. Soc. Translations 2, 207–316 (1956)

    Google Scholar 

  110. J. Hovenier, C. Van Der Mee, H. Domke, Transfer of Polarized Light in Planetary Atmospheres. Springer Netherlands (2004). https://doi.org/10.1007/978-1-4020-2856-4

  111. C. Siewert, On the phase matrix basic to the scattering of polarized light. Astron. Astrophys. 109, 195–200 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Efremenko .

Appendices

Appendix 1: On the Use of Complex Electromagnetic Fields for Computing Time-Averaged Poynting Vector

In electrodynamics, the complex representation of electric and magnetic fields is used quite extensively for mathematical convenience. Consider time-harmonic complex fields

$$\begin{aligned} \hat{\mathbf {E}}\left( \mathbf {r},t\right) =\hat{\mathbf {E}}\left( \mathbf {r}\right) e^{-j\omega t}, \end{aligned}$$
(3.265)
$$\begin{aligned} \hat{\mathbf {H}}\left( \mathbf {r},t\right) =\hat{\mathbf {H}}\left( \mathbf {r}\right) e^{-j\omega t}. \end{aligned}$$
(3.266)

Here the “hat” sign is used for complex quantities, and \(j^{2}=-1\). Note that time-independent amplitudes \(\hat{\mathbf {E}}\left( \mathbf {r}\right) \)and \(\hat{\mathbf {H}}\left( \mathbf {r}\right) \) correspond to perfectly monochromatic radiation, while slowly varying \(\hat{\mathbf {E}}\left( \mathbf {r}\right) \) and \(\hat{\mathbf {H}}\left( \mathbf {r}\right) \) represent the so-called quasi-monochromatic radiation.

In practice, only the real parts, i.e., \(\mathbf {E}=\mathrm {Re}\{\hat{\mathbf {E}}\}\) and \(\mathbf {H}=\mathrm {Re}\{\hat{\mathbf {H}}\}\) , have the physical meaning. Furthermore, letting \(^{*}\) denote complex conjugate, we can express \(\mathbf {E}\) as follows:

$$\begin{aligned} \mathbf {E}\left( \mathbf {r},t\right) =\mathrm {Re}\left\{ \hat{\mathbf {E}}\left( \mathbf {r},t\right) \right\} =\frac{1}{2}\left[ \hat{\mathbf {E}}\left( \mathbf {r}\right) e^{-\mathrm{j}\omega t}+\hat{\mathbf {E}}^{*}\left( \mathbf {r}\right) e^{\mathrm{j}\omega t}\right] \end{aligned}$$
(3.267)

and similarly for H:

$$\begin{aligned} \mathbf {H}\left( \mathbf {r},t\right) =\mathrm {Re}\left\{ \hat{\mathbf {H}}\left( \mathbf {r},t\right) \right\} =\frac{1}{2}\left[ \hat{\mathbf {H}}\left( \mathbf {r}\right) e^{-\mathrm{j}\omega t}+\hat{\mathbf {H}}^{*}\left( \mathbf {r}\right) e^{\mathrm{j}\omega t}\right] . \end{aligned}$$
(3.268)

Substituting Eqs. (3.267) and (3.268) into Eq. (3.39) yields the expression for the complex Poynting vector:

$$\begin{aligned} \begin{array}{l} {\hat{\mathbf {S}}=\dfrac{1}{4}\left[ \hat{\mathbf {E}}\left( \mathbf {r}\right) \times \hat{\mathbf {H}}\left( \mathbf {r}\right) e^{-2\mathrm{j}\omega t}+\hat{\mathbf {E}}^{*}\left( \mathbf {r}\right) \times \hat{\mathbf {H}}^{*}\left( \mathbf {r}\right) e^{2\mathrm{j}\omega t}\right] }\\ {+\dfrac{1}{4}\left[ \hat{\mathbf {E}}^{*}\left( \mathbf {r}\right) \times \hat{\mathbf {H}}\left( \mathbf {r}\right) +\hat{\mathbf {E}}\left( \mathbf {r}\right) \times \hat{\mathbf {H}}^{*}\left( \mathbf {r}\right) \right] .} \end{array} \end{aligned}$$
(3.269)

Then, taking into account that

$$\begin{aligned} \mathbf {S}=\mathrm {Re}\{\hat{\mathbf {S}}\}, \end{aligned}$$
(3.270)
$$\begin{aligned} \mathrm {Re}\{\hat{\mathbf {E}}^{*}\left( \mathbf {r}\right) \times \hat{\mathbf {H}}\left( \mathbf {r}\right) \}=\mathrm {Re}\{\hat{\mathbf {E}}\left( \mathbf {r}\right) \times \hat{\mathbf {H}}^{*}\left( \mathbf {r}\right) \} \end{aligned}$$
(3.271)

and

$$\begin{aligned} \left\langle e^{\pm 2\mathrm{j}\omega t}\right\rangle =0, \end{aligned}$$
(3.272)

we obtain the expression for the time-averaged Poynting vector in the form of Eq. (3.44).

Appendix 2: Computations of Legendre Polynomials

The associated Legendre polynomials \(P_{l}^{m}\left( \mu \right) \) (sometimes referred to as Ferrers’ functions) can be computed recurrently. The base of the recurrence is given by two formulas for m = l and l = m + 1, respectively,

$$\begin{aligned} P_{m}^{m}\left( \mu \right) =(-1)^{m}(2m-1)!!(1-\mu ^{2})^{m/2} \end{aligned}$$
(3.273)

and

$$\begin{aligned} P_{m+1}^{m}(\mu )=\mu (2m+1)P_{m}^{m}\left( \mu \right) \end{aligned}$$
(3.274)

with !! the double factorial (n!! equals to the product of all the integers from 1 up to n that have the same parity (odd or even) as n — it should not be confused with the factorial iterated twice, which would be written as (n!)!). Polynomials \(P_{l}^{m}\left( \mu \right) \) for \(l\ge m+2\) are computed by using three-term recurrence relation with respect to the degree (for m = 0 known is Bonnet’s recursion formula):

$$\begin{aligned} (2l+1)\mu P_{l}^{m}(\mu )=(l+m)P_{l-1}^{m}(\mu )+(l-m+1)P_{l+1}^{m}(\mu ). \end{aligned}$$
(3.275)

For validation of the recurrent formula implementation, it is convenient to use analytical forms of the first few associated Legendre polynomials are listed in Table 3.4.

Note that polynomials \(P_{l}^{m}\left( \mu \right) \) satisfy the following normalization condition

$$\begin{aligned} \int _{-1}^{1}P_{l}^{m}(\mu )P_{l'}^{m}(\mu )d\mu =\frac{2}{2l+1}\frac{(l+m)!}{(l-m)!}\delta _{ll'} \end{aligned}$$
(3.276)

and the maximum value of \(P_{l}^{m}\left( \mu \right) \) rapidly increases with m. To avoid overflow during the recurrent process, it is recommended to compute normalized Legendre polynomials \(\bar{P}_{l}^{m}\left( \mu \right) \) defined as

$$\begin{aligned} \bar{P}_{l}^{m}(\mu )=\sqrt{\left( 2l+1\right) \frac{(l-m)!}{(l+m)!}}P_{l}^{m}(\mu ) \end{aligned}$$
(3.277)

instead of \(P_{l}^{m}\left( \mu \right) \). For \(\bar{P}_{l}^{m}(\mu )\) the following normalization condition holds:

$$\begin{aligned} \int _{-1}^{1}\bar{P}_{l}^{m}(\mu )\bar{P}_{l'}^{m}(\mu )d\mu =2\delta _{ll'}. \end{aligned}$$
(3.278)
Table 3.4 The first few associated Legendre polynomials

Appendix 3: Computations of Generalized Spherical Functions

The generalized spherical functions \(R_{l}^{m}\left( \mu \right) \) and \(T_{l}^{m}\left( \mu \right) \) can be expressed as follows [67, 109,110,111]:

$$\begin{aligned} R_{l}^{m}\left( \mu \right) =-\frac{1}{2}(i)^{m}\sqrt{\frac{(l+m)!}{(l-m)!}}\left\{ P_{m,2}^{l}\left( \mu \right) +P_{m,-2}^{l}\left( \mu \right) \right\} , \end{aligned}$$
(3.279)
$$\begin{aligned} T_{l}^{m}\left( \mu \right) =-\frac{1}{2}(i)^{m}\sqrt{\frac{(l+m)!}{(l-m)!}}\left\{ P_{m,2}^{l}\left( \mu \right) -R_{m,-2}^{l}\left( \mu \right) \right\} , \end{aligned}$$
(3.280)

where for \(l\ge \max (m,2)\),

$$\begin{aligned} \begin{array}{l} {P_{m,n}^{l}\left( \mu \right) =A_{m,n}^{l}\left( 1-\mu \right) ^{-(n-m)/2}(1+\mu )^{-(n+m)/2}}\\ {\times \frac{d^{l-n}}{d\mu ^{l-n}}\left[ \left( 1-\mu \right) ^{l-m}\left( 1+\mu \right) ^{l+m}\right] ,} \end{array} \end{aligned}$$
(3.281)

with

$$\begin{aligned} A_{m,n}^{l}=\frac{\left( -1\right) ^{l-m}\left( i\right) ^{n-m}}{2^{l}\left( l-m\right) !}\sqrt{\frac{(l-m)!(l+n)!}{(l+m)!(l-n)!}}. \end{aligned}$$
(3.282)

For \(P_{m,n}^{l}\) the recursion formula was derived in [109]:

$$\begin{aligned} e_{m,n}^{l}P_{m,n}^{l+1}\left( \mu \right) =(2l+1)\mu P_{m,n}^{l}\left( \mu \right) -f_{m,n}^{l}P_{m,n}^{l-1}\left( \mu \right) -\frac{mn\left( 2l+1\right) }{l(l+1)}P_{m,n}^{l}\left( \mu \right) \end{aligned}$$
(3.283)

with

$$\begin{aligned} e_{m,n}^{l}=\frac{1}{l+1}\sqrt{(l+m+1)(l-m+1)(l+n+1)(l-n+1)} \end{aligned}$$
(3.284)

and

$$\begin{aligned} f_{m,n}^{l}=\frac{1}{l}\sqrt{(l+m)(l-m)(l+n)(l-n)}. \end{aligned}$$
(3.285)

Given Eqs. (3.279)-(3.285), the recurrence formulas for \(R_{l}^{m}\) and \(T_{l}^{m}\) can be derived for l > max(m, 2) and \(m\ge 0\):

$$\begin{aligned} \begin{array}{l} {\frac{l+1-m}{l+1}\sqrt{(l+3)(l-1)}R_{l+1}^{m}\left( \mu \right) =}\\ {(2l+1)\mu R_{l}^{m}\left( \mu \right) -\frac{l+m}{l}\sqrt{(l+2)(l-2)}R_{l-1}^{m}\left( \mu \right) -\frac{2m(2l+1)}{l(l+1)}T_{l}^{m}\left( \mu \right) ,} \end{array} \end{aligned}$$
(3.286)
$$\begin{aligned} \begin{array}{l} {\frac{l+1-m}{l+1}\sqrt{(l+3)(l-1)}T_{l+1}^{m}(\mu )=}\\ {(2l+1)\mu T_{l}^{m}(\mu )-\frac{l+m}{l}\sqrt{(l+2)(l-2)}T_{l-1}^{m}(\mu )-\frac{2m(2l+1)}{l(l+1)}R_{l}^{m}(\mu ).} \end{array} \end{aligned}$$
(3.287)

The base of recurrence computation is

$$\begin{aligned} R_{j}^{j}\left( \mu \right) =\frac{(2j)!}{2^{j}j!}\sqrt{\frac{j(j-1)}{(j+1)(j+2)}}\sqrt{1-\mu ^{2}}\frac{1+\mu ^{2}}{1-\mu ^{2}}, \end{aligned}$$
(3.288)
$$\begin{aligned} T_{j}^{j}\left( \mu \right) =\frac{(2j)!}{2^{j}j!}\sqrt{\frac{j(j-1)}{(j+1)(j+2)}}\sqrt{1-\mu ^{2}}\frac{2\mu }{1-\mu ^{2}}, \end{aligned}$$
(3.289)

while

$$\begin{aligned} R_{l}^{m}\left( \mu \right) =T_{l}^{m}\left( \mu \right) =0,\mathrm{\;\;}l<m. \end{aligned}$$
(3.290)

In particular, it follows:

$$\begin{aligned} R_{2}^{2}\left( \mu \right) =\frac{\sqrt{6}}{2}\left( 1+\mu ^{2}\right) , \end{aligned}$$
(3.291)
$$\begin{aligned} T_{2}^{2}\left( \mu \right) =\sqrt{6}\mu . \end{aligned}$$
(3.292)

For m = 1, the initial values are

$$\begin{aligned} R_{2}^{1}\left( \mu \right) =-\frac{1}{2}\mu \sqrt{6}\sqrt{1-\mu ^{2}}, \end{aligned}$$
(3.293)
$$\begin{aligned} T_{2}^{1}\left( \mu \right) =-\frac{1}{2}\sqrt{6}\sqrt{1-\mu ^{2}}. \end{aligned}$$
(3.294)

Finally, for m = 0, we have

$$\begin{aligned} R_{2}^{0}\left( \mu \right) =\frac{\sqrt{6}}{4}(1-\mu ^{2}), \end{aligned}$$
(3.295)
$$\begin{aligned} T_{2}^{0}\left( \mu \right) =0. \end{aligned}$$
(3.296)

Note that \(R_{l}^{m}\) and \(T_{l}^{m}\) satisfy the following normalization condition:

$$\begin{aligned} \int _{-1}^{+1}\left[ R_{l}^{m}\left( \mu \right) R_{r}^{m}\left( \mu \right) +T_{l}^{m}\left( \mu \right) T_{r}^{m}\left( \mu \right) \right] d\mu =1, \end{aligned}$$
(3.297)

where l, r \(\ge \) max(m, 2).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Efremenko, D., Kokhanovsky, A. (2021). Light Scattering, Absorption, Extinction, and Propagation in the Terrestrial Atmosphere. In: Foundations of Atmospheric Remote Sensing. Springer, Cham. https://doi.org/10.1007/978-3-030-66745-0_3

Download citation

Publish with us

Policies and ethics