Skip to main content

Submarine Groundwater Discharge as a Catalyst for Eodiagenetic Carbonate Cements Within Marine Sedimentary Basins

  • Chapter
  • First Online:
Limnogeology: Progress, Challenges and Opportunities

Part of the book series: Syntheses in Limnogeology ((SYNLIMNO))

Abstract

Submarine groundwater discharge (SGD) is the input of freshwater into ocean water and sediments, especially in estuaries, from continental aquifers. Such meteoric water influx can occur at depths up to 3000 m. The mixing of calcium-rich meteoric water with saline marine water in the presence of organic matter can produce early calcite cement in pores. Pervasive to stratabound carbonate cementation in shallow to offshore marine sandstones has been assumed to result from long-term slow diffusion or advective processes. However, results from the sedimentologic and geochemical studies of Cretaceous calcitic concretion-bearing layers in sandstones in a marine coastal setting indicate otherwise. Permineralization of delicate fungi, liverworts, mosses, and macrophytic plant material as well as associated textures and isotopic signatures of carbonate cement within stratabound concretions in the Longarm Formation on Vancouver Island, Canada, indicate high flux flow of calcium-rich meteoric waters during very early diagenesis (eogenesis) to synsedimentary freshwater diagenesis. We propose that calcite cementation from meteoric waters along horizons in estuarine to fully marine sediments can occur through SGD directly via terrestrial aquifer flow through carbonates. Because SGD can be introduced into marine sediments along shallow coastlines as well as at great depths, this groundwater input may be an important geochemical process in the diagenesis of coastal marine sediments, and is key to fossil preservation, including permineralization of land plants along ancient coastlines and possibly the formation of Carboniferous coal balls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Wahab, A., & McBride, E. F. (2001). Origin of giant calcite-cemented concretions, Temple Member, Qasr El Sagha Formation (Eocene). Faiyum Depression, Egypt: Journal of Sedimentary Research, 71, 70–81.

    Google Scholar 

  • Al-Ramadan, K., Morad, S., Proust, J. N., & Al-Aasm, I. (2005). Distribution of diagenetic alterations in siliciclastic shoreface deposits within a sequence stratigraphic framework: Evidence from the Upper Jurassic Boulonnais. NW France: Journal of Sedimentary Research, 75, 943–959.

    Google Scholar 

  • Allan, J. R., & Matthews, R. K. (1977). Isotope signatures associated with early meteoric diagenesis. Sedimentology, 29, 797–817.

    Article  Google Scholar 

  • Bjørkum, P. A., & Walderhaug, O. (1990). Geometrical arrangement of calcite cementation within shallow marine sandstones. Earth Science Reviews, 29, 145–161.

    Article  Google Scholar 

  • Bjørkum, P. A., & Walderhaug, O. (1993). Isotopic composition of a calcite-cemented layer in the Lower Jurassic Bridport Sands, southern England: Implications for formation of laterally extensive calcite-cemented layers. Journal of Sedimentary Petrology, 63, 678–682.

    Article  Google Scholar 

  • Bjørlykke, K. (2010). Petroleum geoscience: From sedimentary environments to rock physics. Berlin: Springer, 508p.

    Book  Google Scholar 

  • Bjørlykke, K., & Jahren, J. (2012). Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs. American Association of Petroleum Geologists Bulletin, 96, 2193–2214.

    Article  Google Scholar 

  • Bratton, J. F. (2010). The three scales of submarine groundwater flow and discharge across passive continental margins. The Journal of Geology, 110, 565–575.

    Article  Google Scholar 

  • Cai, W., Wang, Y., Krest, J., & Moore, W. S. (2003). The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to coastal ocean. Geochimica et Cosmochimica Acta, 67, 631–637.

    Article  Google Scholar 

  • Campbell, R. B., Dodds, C. J., Yorath, C. J., & Brown, A. S. (1991). Insular belt. In H. Gabrielse & C. J. Yorath (Eds.), Geology of the Cordilleran Orogen in Canada: Geological Survey of Canada (Vol. 4 (G-2), pp. 574–581). Sherbrooke, QC: Geology of Canada Series.

    Google Scholar 

  • Coleman, M. L. (1993). Microbial processes: controls on the shape and composition of carbonate concretions. Marine Geology, 113, 127–140.

    Article  Google Scholar 

  • Curtis, C. D., & Coleman, M. L. (1986). Controls on the precipitation of early diagenetic calcite, dolomite, and siderite concretions in complex depositional sequences. In D. L. Gautier (Ed.), Roles of organic matter in sediment diagenesis (Vol. 38, pp. 23–33). Tulsa, Oklahoma: SEPM Special Publication.

    Chapter  Google Scholar 

  • DeMaris, P. J. (2000). Formation and distribution of coal balls in the Herrin Coal (Pennsylvania), Franklin County, Illinois Basin, USA. Journal of the Geological Society, London, 157, 221–228.

    Article  Google Scholar 

  • Dutta, P. K. (1992). Climatic influence on diagenesis of fluvial sediments. In K. H. Wolf & G. V. Chillingarian (Eds.), Diagenesis III, Developments in Sedimentology (Vol. 47, pp. 191–252). Amsterdam: Elsevier.

    Google Scholar 

  • Dutton, S. P., Willis, B. J., White, C. D., & Bhattacharya, J. P. (2000). Outcrop characterization of reservoir quality and interwell-scale cement distribution in a tide-influenced delta, Frontier Formation, Wyoming, USA. Clay Minerals, 35, 95–105.

    Article  Google Scholar 

  • Evans, W. E., & Amos, D. H. (1961). An example of the origin of coal-balls. Proceedings of the Geologist’s Association, 72, 445–454.

    Article  Google Scholar 

  • Ferris, F. G., Fratton, C. M., Gerits, J. P., Schultze-Lam, S., & Sherwood Lollar, B. (1995). Microbial precipitation of a strontium calcite phase at a groundwater discharge zone near Rock Creek, British Columbia, Canada. Geomicrobiology Journal, 13, 57–67.

    Article  Google Scholar 

  • Gross, M. (1964). Variations in the O18/O16 and C13/C12 ratios of diagenetically altered limestones in the Bermuda Islands. Journal of Geology, 72, 170–194.

    Article  Google Scholar 

  • Haggart, J. W. (1991). A synthesis of cretaceous stratigraphy, Queen Charlotte Islands, British Columbia. In G. J. Woodsworth (Ed.), Evolution and hydrocarbon potential of the queen Charlotte Basin (Geological Survey of Canada, British Columbia, Paper 90-10) (pp. 253–277).

    Google Scholar 

  • Haggart, J. W. (1996). Stratigraphy and correlation of cretaceous rocks of the northern Insular Belt, western Canada. Mitteilungen Geologie-Paläontologie Institut, Universität Hamburg, 77, 67–73.

    Google Scholar 

  • Holmden, C., Papanastassiou, D. A., Blanchon, P., & Evans, S. (2012). δ44/40Ca variability in shallow water carbonates and the impact of submarine groundwater discharge on Ca-cycling in marine environments. Geochimica et Cosmochimica Acta, 83, 179–194.

    Article  Google Scholar 

  • Holmes, J., & Scott, A. C. (1981). A note on the occurrence of marine animal remains in a Lancashire coal ball. Geological Magazine, 118, 307–308.

    Article  Google Scholar 

  • Hudson, J. D. (1978). Concretions, isotopes, and the diagenetic history of the Oxford Clay (Jurassic) of central England. Sedimentology, 25, 339–370.

    Article  Google Scholar 

  • Jeletzky, J. A. (1970). Cretaceous macrofaunas. In E. W. Bamber, T. E. Bolton, M. J. Copeland, L. M. Cumming, H. Frebold, W. H. Fritz, J. A. Jeletzky, D. C. McGregor, D. J. McLaren, B. S. Norford, A. W. Norris, G. W. Sinclair, E. T. Tozer, & F. J. E. Wagner (Eds.), Biochronology: Standard of phanerozoic time (Geological Survey of Canada, Economic Geology Report 1B) (pp. 649–662).

    Google Scholar 

  • Jeletzky, J. A. (1976). Mesozoic and ?Tertiary rocks of Quatsino Sound, Vancouver Island, British Columbia. Geological Survey of Canada Bulletin, 242, 1–243.

    Google Scholar 

  • Johannes, R. E. (1980). The ecological significance of the submarine discharge of groundwater. Marine Ecology Progress Series, 3, 365–373.

    Article  Google Scholar 

  • Jørgensen, N. O. (1976). Recent high magnesian calcite/aragonite cementation of beach and submarine sediments from Denmark. Journal of Sedimentary Petrology, 46, 940–951.

    Google Scholar 

  • Kantorowicz, J. D., Bryant, I. D., & Dawans, J. M. (1987). Controls on the geometry and distribution of carbonate cements in Jurassic sandstones: Bridgport Sands, southern England and Viking Group, Troll Field, Norway. In J. D. Marshall (Ed.), Diagenesis of Sedimentary Sequences (Vol. 36, pp. 103–118). Geological Society (London) Special. Publication.

    Google Scholar 

  • Kiteley, L. W., & Field, M. E. (1984). Shallow marine depositional environments in the Upper Cretaceous of northern Colorado. In R. W. Tillman & C. T. Siemers (Eds.), Siliciclastic shelf sediments (Vol. 34, pp. 179–204). Tulsa, Oklahoma: SEPM Special Publication.

    Chapter  Google Scholar 

  • Kocurko, M. J. (1986). Interaction of organic matter and crystallization of high magnesium calcite, south Louisiana. In D. L. Gautier (Ed.), Roles of organic matter in sediment diagenesis (Vol. 38, pp. 13–21). SEPM Special Publication, Tulsa, Oklahoma.

    Google Scholar 

  • Lantz, T. C., Rothwell, G. W., & Stockey, R. A. (1999). Conantiopteris schuchmanii, gen. et sp. nov., and the role of fossils in resolving phylogeny of Cyatheaceae s.l. Journal of Plant Research, 112, 361–381.

    Article  Google Scholar 

  • Leng, M. J., & Marshall, J. D. (2004). Paleoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23, 811–831.

    Article  Google Scholar 

  • Li, L., Barry, D. A., Stagnitti, F., & Parlange, J.-Y. (1999). Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resources Research, 35, 3253–3259.

    Article  Google Scholar 

  • Little, S. A., Stockey, R. A., & Rothwell, G. W. (2006). Solenostelopteris skogiae sp. nov. from the Lower Cretaceous of Vancouver Island. Journal of Plant Research, 119, 525–532.

    Article  Google Scholar 

  • Longstaffe, F. J., & Ayalon, A. (1987). Oxygen-isotope studies of clastic diagenesis in the Lower Cretaceous Viking Formation, Alberta: implications for the role of meteoric water. In J. D. Marshall (Ed.), Diagenesis of sedimentary sequences (Geological Society (London) Special Publication) (Vol. 36, pp. 277–296).

    Google Scholar 

  • Longstaffe, F. J. (1994). Stable isotope constraints on sandstone diagenesis in the western Canada sedimentary basin. In A. Parker & B. W. Sellwood (Eds.), Quantitative diagenesis: Recent developments and applications to reservoir geology (pp. 223–274). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Machel, H. G. (2000). Application of cathodoluminescence to carbonate diagenesis. In M. Pagel, V. Barbin, P. Blanc, & D. Ohnenstetter (Eds.), Cathodoluminescence in geosciences (pp. 271–301). Berlin: Springer.

    Chapter  Google Scholar 

  • Maliva, R. G., Missimer, T. M., Leo, K. C., Statom, R. A., Dupraz, C., Lynn, M., & Dickson, J. A. D. (2000). Unusual calcite stromatolites and pisoids from a landfill leachate collection system. Geology, 28, 931–934.

    Article  Google Scholar 

  • Mamay, S. H., & Yochelson, E. L. (1962). Occurrence and significance of marine animal remains in American coal balls. U.S. Geological Survey Professional Paper 354-I, 224p. plus plates.

    Google Scholar 

  • Manheim, F. T., & Paull, C. K. (1981). Patterns of groundwater salinity changes in a deep continental-oceanic transect off the southeastern Atlantic coast of the U.S.A. Journal of Hydrology, 54, 95–105.

    Google Scholar 

  • McBride, E. F., & Parea, G. C. (2001). Origin of highly elongate, calcite-cemented concretions in some Italian coastal beach and dune sands. Journal of Sedimentary Research, 71, 82–87.

    Article  Google Scholar 

  • McBride, E. F., Picard, M. D., & Folk, R. L. (1994). Oriented concretions, Ionian coast, Italy: evidence of groundwater flow direction. Journal of Sedimentary Research, A64, 535–540.

    Google Scholar 

  • McBride, E. F., Milliken, K. L., Cavazza, W., Cibin, U., Fontana, D., Picard, M. D., & Zuffa, G. G. (1995). Heterogeneous distribution of calcite cement at the outcrop scale in Tertiary sandstones, northern Apennines, Italy. American Association of Petroleum Geologists Bulletin, 79, 1044–1063.

    Google Scholar 

  • Michael, H. A., Mulligan, A. E., & Harvey, C. F. (2005). Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature, 436, 1145–1148.

    Article  Google Scholar 

  • Miller, D. C., & Ullman, W. J. (2004). Ecological consequences of groundwater discharge to Delaware Bay, United States. Ground Water, 42, 959–970.

    Article  Google Scholar 

  • Milliken, K. L., McBride, E. F., Cavazza, W., Cibin, U., Fontana, D., Picard, M. D., & Zuffa, G. G. (1998). Geochemical history of calcite precipitation in Tertiary sandstones, northern Apennines, Italy. In S. Morad (Ed.), Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution (Vol. 26, pp. 213–239). International Association of Sedimentologists Special Publication.

    Google Scholar 

  • Mitterer, R. M., & Cunningham, R., Jr. (1985). The interaction of natural organic matter with grain surfaces: Implications for calcium carbonate precipitation. In N. Schneidermann & P. M. Harris (Eds.), Carbonate Cements (Vol. 36, pp. 17–31). Tulsa, Oklahoma: SEPM Special Publication.

    Chapter  Google Scholar 

  • Moore, W. S. (1999). The subterranean estuary: A reaction zone of groundwater and sea water. Marine Chemistry, 65, 111–125.

    Article  Google Scholar 

  • Moore, W. S. (2010). The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science, 2, 59–88.

    Article  Google Scholar 

  • Mozley, P. S., & Burns, S. J. (1993). Oxygen and carbon isotopic composition of marine carbonate concretions: An overview. Journal of Sedimentary Petrology, 63, 73–83.

    Google Scholar 

  • Mozley, P. S., & Davis, J. M. (2005). Internal structure and mode of growth of elongated calcite concretions: evidence for small-scale microbially induced, chemical heterogeneity in groundwater. Geological Society of America Bulletin, 117, 1400–1412.

    Article  Google Scholar 

  • Nishida, H., & Nishida, M. (1988). Protomonimia kasai-nakajhongii gen. et sp. nov.: a permineralized Magnlialean fructification from the mid-Cretaceous of Japan. Botanical Magazine of Tokyo, 101, 397–426.

    Article  Google Scholar 

  • Nishida, M., Ohsawa, T., & Nishida, H. (1992). Structure and affinities of the petrified plants from the Cretaceous of northern Japan and Saghalien VIII. Parataiwania nihongii gen. et sp. nov., a taxodiaceous cone from the Upper Cretaceous of Hokkaido. Journal of Japanese Botany, 67, 1–9.

    Google Scholar 

  • Nishida, M., Yoshida, A., & Nishida, H. (1996). Cretocycas yezonakajimae gen. et sp. nov., a permineralized cycad petiole from the Upper Cretaceous of Hokkaido. Journal of Japanese Botany, 71, 223–230.

    Google Scholar 

  • Nixon, G. T., Hammack, J. L., Koyanagi, V. M., Payie, G. J., Panteleyev, A., Massey, N. W. D., Hamilton, J. V., & Haggart, J. W. (1994). Preliminary geology of the Quatsino-Port McNeill Map areas, northern Vancouver Island (pp. 63–85). Paper – Ministry of Energy, Mines and Petroleum Resources.

    Google Scholar 

  • Park, A. J. (2009). Prediction of calcite cementation in sandstones associated with sandstone-shale interaction, Gulf of Mexico (p. 160). 2009 American Association of Petroleum Geologists Annual Meeting (Denver CO), Abstract Volume,.

    Google Scholar 

  • Pemberton, S. G., Spila, M., Pulham, A. J., Saunders, T., MacEachern, J. A., Robbins, D., & Sinclair, I. K. (2001). Ichnology and Sedimentology of Shallow to Marginal Marine Systems: Ben Nevis and Avalon Reservoirs, Jeanne d’Arc Basin. Geological Association of Canada Short Course Notes, 15, 1–343.

    Google Scholar 

  • Plummer, L. N. (1975). Mixing of sea water with calcium carbonate groundwater. In W. H. T. Whitten (Ed.), Quantitative Studies in the Geological Sciences (Vol. 142, pp. 219–236). Geological Society of America Memoir.

    Google Scholar 

  • Post, V. E. A., Groen, J., Kooi, H., Person, M., Ge, S., & Edmunds, W. M. (2013). Offshore fresh groundwater reserves as a global phenomenon. Nature, 504, 71–78.

    Article  Google Scholar 

  • Price, R. M., Swart, P. K., & Fourquean, J. W. (2006). Coastal groundwater discharge – An additional source of phosphorus for the oligotrophic wetlands of the Everglades. Hydrobiologia, 569, 23–36.

    Google Scholar 

  • Raiswell, R., & Fisher, Q. J. (2000). Carbonate concretions: a review of growth mechanisms and their influence on chemical and isotopic composition. Journal of the Geological Society (London), 157, 239–257.

    Article  Google Scholar 

  • Ratzel, S. R., Rothwell, G. W., Mapes, G., Mapes, R. H., & Doguzhaeva, L. A. (2001). Pityostrobus hokodzensis, a new species of pinaceous cone from the Cretaceous of Russia. Journal of Paleontology, 75, 895–900.

    Article  Google Scholar 

  • Raymond, A., Guillemette, R., Jones, C. P., & Ahr, W. M. (2012). Carbonate petrology and geochemistry of Pennsylvanian coal balls from the Kalo Formation of Iowa. International Journal of Coal Geology, 94, 137–149.

    Article  Google Scholar 

  • Richter, D. K., Heinrich, F., Geske, A., Neuser, R. D., Gies, H., & Immenhauser, A. (2014). First description of Phanerozoic radiaxial fibrous dolomite. Sedimentary Geology, 304, 1–10.

    Article  Google Scholar 

  • Ritger, S., Carson, B., & Suess, E. (1987). Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geological Society of America Bulletin, 98, 147–156.

    Article  Google Scholar 

  • Robb, J. M. (1990). Groundwater processes in the submarine environment. In C. G. Higgins & D. R. Coates (Eds.), Groundwater geomorphology: The role of subsurface water in earth-surface processes and landforms (Vol. 252, pp. 267–281). Geological Society of America Special Paper.

    Google Scholar 

  • Roberts, H. H., & Whelan, T., III. (1975). Methane-derived carbonate cements in barrier and beach sands of a subtropical delta complex. Geochimica et Cosmochimica Acta, 39, 1085–1089.

    Article  Google Scholar 

  • Rodellas, V., Garcia-Orellana, J., Masque, P., Feldman, M., & Weinstein, Y. (2015). Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proceedings of the National Academy of Sciences, 112, 3927–3930.

    Article  Google Scholar 

  • Rothwell, G. W., Crepet, W. L., & Stockey, R. A. (2009). Is the anthophyte hypothesis alive and well? New evidence from the reproductive structures of Bennettitales. American Journal of Botany, 96, 296–322.

    Article  Google Scholar 

  • Rothwell, G. W., & Stockey, R. A. (2002). Anatomically preserved Cycadeoidea (Cycadeoidaceae) with a re-evaluation of systematic characters for the seed cones of Bennettitales. American Journal of Botany, 89, 1447–1458.

    Article  Google Scholar 

  • Rothwell, G. W., & Stockey, R. A. (2006). Combining characters of Pteridaceae and tree ferns: Pterisorus radiata gen. et. sp. nov., a permineralized Lower Cretaceous filicalean fern. International Journal of Plant Sciences, 167, 695–701.

    Article  Google Scholar 

  • Schmalz, R. F. (1971). Formation of beachrock at Eniwetok atoll. In O. P. Bricker (Ed.), Carbonate Cements (pp. 17–24). Baltimore: The John Hopkins Press.

    Google Scholar 

  • Schwartz, M. C. (2003). Significant groundwater input to a coastal plain estuary: Assessment from excess radon: Estuarine. Coastal and Shelf Science, 56, 31–42.

    Article  Google Scholar 

  • Scott, A. C., & Rex, G. (1985). The formation and significance of Carboniferous coal balls. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 311, 123–137.

    Google Scholar 

  • Scott, A. C., Mattey, D. P., & Howard, R. (1996). New data on the formation of carboniferous coal balls. Review of Palaeobotany and Palynology, 93, 317–331.

    Article  Google Scholar 

  • Scott, A. C., & Collinson, M. E. (2003). Non-destructive multiple approaches to interpret the preservation of plant fossils: implications for calcium-rich permineralizations. Journal of the Geological Society (London), 160, 857–862.

    Article  Google Scholar 

  • Shaban, A., Khawlie, M., Abdallah, C., & Faour, G. (2005). Geologic controls on submarine groundwater discharge: Application of remote sensing to North Lebanon: Environmental. Geology, v., 47, 512–522.

    Google Scholar 

  • Siewers, F. D., & Phillips, T. L. (2015). Petrography and microanalysis of Pennsylvanian coal-ball concretions (Herrin Coal, Illinois Basin, USA): Bearing on fossil plant preservation and coal-ball origins. Sedimentary Geology, 329, 130–148.

    Article  Google Scholar 

  • Smith, S. Y., Rothwell, G. W., & Stockey, R. A. (2003). Cyathea cranhami sp. nov. (Cyatheaceae) anatomically preserved tree fern sori from the Lower Cretaceous of Vancouver lsland, British Columbia. American Journal of Botany, 90, 755–760.

    Article  Google Scholar 

  • Stanich, N. A., Rothwell, G. W., & Stockey, R. A. (2009). Phylogenetic radiation of Equisetum (Equisetales) as inferred by Lower Cretaceous species of from British Columbia, Canada. American Journal of Botany, 96, 1289–1299.

    Article  Google Scholar 

  • Stockey, R. A., & Rothwell, G. W. (2006). The last of the pre-angiospermous vegetation: A Lower Cretaceous flora from Apple Bay, Vancouver Island. Presentation No. 45. In Advances in paleobotany – recognizing the contributions of David L. Dilcher and Jack A. Wolfe on the occasion of their 70th Birthday, Florida Museum of Natural History. University of Florida.

    Google Scholar 

  • Stockey, R. A., & Rothwell, G. W. (2009). Distinguishing angiophytes from the earliest angiosperms: A Lower Cretaceous (Valanginian-Hauterivian) fruit-like reproductive structure. American Journal of Botany, 96, 323–335.

    Article  Google Scholar 

  • Stockey, R. A., & Wiebe, N. J. P. (2008). Lower Cretaceous conifers from Apple Bay, Vancouver Island: Picea-like leaves, Midoriphyllum piceoides gen. et sp. nov. (Pinaceae). Botany, 86, 649–657.

    Article  Google Scholar 

  • Stockey, R. A., Rothwell, G. W., & Little, S. A. (2006). Relationships among fossil and living Dipteridaceae: Anatomically preserved Hausmannia from the Lower Cretaceous of Vancouver Island. International Journal of Plant Sciences, 167, 649–663.

    Article  Google Scholar 

  • Taniguchi, M., Burnett, W. C., Cable, J. E., & Turner, J. V. (2002). Investigation of submarine groundwater discharge. Hydrological Processes, 16, 2115–2129.

    Article  Google Scholar 

  • Ullman, W. J., Chang, B., Miller, D. C., & Madsen, J. A. (2003). Groundwater mixing, nutrient diagenesis, and discharges across a sandy beachface, Cape Henlopen, Delaware (USA). Estuarine, Coastal, and Shelf Science, 57, 539–552.

    Article  Google Scholar 

  • Vavrek, M. J., Stockey, R. A., & Rothwell, G. W. (2006). Osmunda vancouverense sp. nov. (Osmundaceae), permineralized fertile frond segments from the Lower Cretaceous of British Columbia, Canada. International Journal of Plant Sciences, 167, 631–637.

    Article  Google Scholar 

  • Watts, N. L. (1978). Displacive calcite: evidence from recent and ancient calcretes. Geology, 6, 699–703.

    Article  Google Scholar 

  • Wigley, T. M. L., & Plummer, L. N. (1976). Mixing of carbonate waters. Geochimica et Cosmochimica Acta, 40, 989–995.

    Article  Google Scholar 

  • Wilkinson, M. (1991). The concretions of the Bearreraig Sandstone Formation: geometry and geochemistry. Sedimentology, 38, 899–912.

    Article  Google Scholar 

  • Wilkinson, M. (1993). Geometrical arrangement of calcite cementation within shallow marine sandstones. Earth Science Reviews, 34, 47–51.

    Article  Google Scholar 

  • Wilkinson, M., & Dampier, M. D. (1990). The rate of growth of sandstone-hosted calcite concretions. Geochimica et Cosmochimica Acta, 54, 3391–3399.

    Article  Google Scholar 

  • Zapata-Rios, X., & Price, R. M. (2012). Estimates of groundwater discharge to a coastal wetland using multiple techniques: Taylor Slough, Everglades. Hydrogeology Journal, 20, 1651–1668.

    Article  Google Scholar 

  • Zelster, I. S., Everett, L. G., & Dzhamalov, R. G. (2006). Submarine groundwater. Boca Raton, FL: CRC Press, Taylor and Francis Group, 475p.

    Google Scholar 

Download references

Acknowledgments

This manuscript was originally drafted by BGK with contributions from GWR, RAS, and DBF. All authors designed and performed the research leading to this manuscript, which has evolved from earlier drafts dating back to 2014. This particular version emerged from discussions in 2016 prior to Beth’s unfortunate passing. Every attempt has been made to retain Beth’s original vision and thought process. Special thanks to Jim Haggart for consultations involving paleontologic identification and David Kidder and Bill Ullman for valuable comments on earlier versions of the manuscript. Martin Kordesch and Ricardo Zanatta aided in the cathodoluminescence analysis. The manuscript was improved by reviewer comments from Christine Chen, Kathleen Nicoll and Russell S. Shapiro. This study was funded by a National Science Foundation grant (EAR0308931) to GWR and a NSERC grant (A6908) to RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Finkelstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gierlowski-Kordesch, E.H., Rothwell, G.W., Stockey, R.A., Finkelstein, D.B. (2021). Submarine Groundwater Discharge as a Catalyst for Eodiagenetic Carbonate Cements Within Marine Sedimentary Basins. In: Rosen, M.R., Finkelstein, D.B., Park Boush, L., Pla-Pueyo, S. (eds) Limnogeology: Progress, Challenges and Opportunities . Syntheses in Limnogeology. Springer, Cham. https://doi.org/10.1007/978-3-030-66576-0_15

Download citation

Publish with us

Policies and ethics