Skip to main content

Eukaryotic Plasma Cholesterol Prediction from Human GPCRs Using K-Means with Support Vector Machine

  • Chapter
  • First Online:
Advanced Deep Learning for Engineers and Scientists

Abstract

In cell physiology, eukaryotic membrane components have played significant role in every aspect of human body. Amid all, membrane cholesterol is one who has the power to drop off the permeability of biological membranes to a variety of solutes. Generally, cholesterol is distributed heterogeneously in membrane protein. Additionally, the length of membrane protein is laid from extracellular region to intracellular region, and membrane cholesterol is always targeted in both forward and backward direction. We know that G-protein-coupled receptor is a superfamily in mammalian cells and it contains more than 800 proteins in it. Among these 800 proteins, half of them are olfactory proteins. So it is very difficult to predict exact signature motif of cholesterol with GPCR protein. So we have focused our research except on olfactory receptor. In case of data mining applications, clustering plays a crucial role. Clustering is nothing but grouping of similar objects in one cluster points. There are numerous algorithms which have been utilized for clustering the same data points. Among all K-means is an important algorithm which is used when we have unlabeled data. Support vector machine (SVM) plays a significant roleĀ for prediction and classification among dissimilar objects. For that purpose we have developed a hybrid approach, that is, K-means and support vector machine, for prediction of membrane protein GPCR and membrane cholesterol, and this experiment provides enhanced prediction results according with our data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tripathy, R., Mishra, D., Konkimalla, V.B., Nayak, R.K.: A computational approach for mining cholesterol and their potential target against GPCR seven helices based on spectral clustering and fuzzy c-means algorithms. J. Intell. Fuzzy Syst. 35(1), 305ā€“314 (2018)

    ArticleĀ  Google ScholarĀ 

  2. Ahmed, M.R., Zhan, X., Song, X., Kook, S., Gurevich, V.V., Gurevich, E.V.: Ubiquitin ligase parkin promotes Mdm2ā€“Arrestin interaction but inhibits arrestin ubiquitination. Biochemistry. 50(18), 3749ā€“3763 (2011)

    ArticleĀ  Google ScholarĀ 

  3. Alvarez-Curto, E., Inoue, A., Jenkins, L., Raihan, S.Z., Prihandoko, R., Tobin, A.B., Milligan, G.: Targeted elimination of G proteins and arrestins defines their specific contributions to both intensity and duration of G protein-coupled receptor signaling. J. Biol. Chem. 291(53), 27147ā€“27159 (2016)

    ArticleĀ  Google ScholarĀ 

  4. Tripathy, R., Mishra, D., Konkimalla, V.B.: A novel fuzzy C-means approach for uncovering cholesterol consensus motif from human G-protein coupled receptors (GPCR). Karbala Int. J. Modern Sci. 1(4), 212ā€“224 (2015)

    ArticleĀ  Google ScholarĀ 

  5. Attramadal, H., Arriza, J.L., Aoki, C., Dawson, T.M., Codina, J., Kwatra, M.M., et al.: Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J. Biol. Chem. 267(25), 17882ā€“17890 (1992)

    ArticleĀ  Google ScholarĀ 

  6. Baameur, F., Morgan, D.H., Yao, H., Tran, T.M., Hammitt, R.A., Sabui, S., et al.: Role for the regulator of G-protein signaling homology domain of G protein-coupled receptor kinases 5 and 6 in Ī²2-adrenergic receptor and rhodopsin phosphorylation. Mol. Pharmacol. 77(3), 405ā€“415 (2010)

    ArticleĀ  Google ScholarĀ 

  7. Baylor, D.A., Lamb, T.D., Yau, K.W.: Responses of retinal rods to single photons. J. Physiol. 288(1), 613ā€“634 (1979)

    Google ScholarĀ 

  8. Benovic, J.L., DeBlasi, A., Stone, W.C., Caron, M.G., Lefkowitz, R.J.: Beta-adrenergic receptor kinase: primary structure delineates a multigene family. Science. 246(4927), 235ā€“240 (1989)

    ArticleĀ  Google ScholarĀ 

  9. Benovic, J.L., KĆ¼hn, H., Weyand, I., Codina, J., Caron, M.G., Lefkowitz, R.J.: Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc. Natl. Acad. Sci. 84(24), 8879ā€“8882 (1987)

    ArticleĀ  Google ScholarĀ 

  10. Benskey, M.J., Perez, R.G., Manfredsson, F.P.: The contribution of alpha synuclein to neuronal survival and functionā€“implications for Parkinsonā€™s disease. J. Neurochem. 137(3), 331ā€“359 (2016)

    ArticleĀ  Google ScholarĀ 

  11. Carman, C.V., Parent, J.L., Day, P.W., Pronin, A.N., Sternweis, P.M., Wedegaertner, P.B., et al.: Selective regulation of GĪ±q/11 by an RGS domain in the G protein-coupled receptor kinase, GRK2. J. Biol. Chem. 274(48), 34483ā€“34492 (1999)

    ArticleĀ  Google ScholarĀ 

  12. Bockaert, J., Pin, J.P.: Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 18(7), 1723ā€“1729 (1999)

    ArticleĀ  Google ScholarĀ 

  13. Gimpl, G.: Interaction of G protein coupled receptors and cholesterol. Chem. Phys. Lipids. 199, 61ā€“73 (2016)

    ArticleĀ  Google ScholarĀ 

  14. Greenwood, A.I., Tristram-Nagle, S., Nagle, J.F.: Partial molecular volumes of lipids and cholesterol. Chem. Phys. Lipids. 143(1ā€“2), 1ā€“10 (2006)

    ArticleĀ  Google ScholarĀ 

  15. Jafurulla, M., Tiwari, S., Chattopadhyay, A.: Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochem. Biophys. Res. Commun. 404(1), 569ā€“573 (2011)

    ArticleĀ  Google ScholarĀ 

  16. Oates, J., Watts, A.: Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr. Opin. Struct. Biol. 21(6), 802ā€“807 (2011)

    ArticleĀ  Google ScholarĀ 

  17. Oddi, S., Dainese, E., Fezza, F., Lanuti, M., Barcaroli, D., De Laurenzi, V., Maccarrone, M.: Functional characterization of putative cholesterol binding sequence (CRAC) in human type-1 cannabinoid receptor. J. Neurochem. 116(5), 858ā€“865 (2011)

    ArticleĀ  Google ScholarĀ 

  18. Sun, X., Whittaker, G.R.: Role for influenza virus envelope cholesterol in virus entry and infection. J. Virol. 77(23), 12543ā€“12551 (2003)

    ArticleĀ  Google ScholarĀ 

  19. Epand, R.M., Thomas, A., Brasseur, R., Epand, R.F.: Cholesterol interaction with proteins that partition into membrane domains: an overview. In: Cholesterol Binding and Cholesterol Transport Proteins, pp. 253ā€“278. Springer, Dordrecht (2010)

    ChapterĀ  Google ScholarĀ 

  20. Hamouda, A.K., Chiara, D.C., Sauls, D., Cohen, J.B., Blanton, M.P.: Cholesterol interacts with transmembrane Ī±-helices M1, M3, and M4 of the Torpedo nicotinic acetylcholine receptor: photolabeling studies using [3H] azicholesterol. Biochemistry. 45(3), 976ā€“986 (2006)

    ArticleĀ  Google ScholarĀ 

  21. UniProt Consortium: The universal protein resource (UniProt). Nucleic Acids Res. 36(suppl_1), D190ā€“D195 (2007)

    ArticleĀ  Google ScholarĀ 

  22. Fahim, A.M., Salem, A.M., Torkey, F.A., Ramadan, M.A.: An efficient enhanced k-means clustering algorithm. J. Zhejiang Univ. Sci. A. 7(10), 1626ā€“1633 (2006)

    ArticleĀ  Google ScholarĀ 

  23. Naik, P.P.S., & Gopal, T.V.: Segmentation of Magnetic Resonance Brain Tumor Using Integrated Fuzzy KMeans Clustering

    Google ScholarĀ 

  24. Fatma, M., Sharma, J.: Leukemia image segmentation using K-means clustering and HSI color image segmentation. Int. J. Comput. Appl. 94(12), 6ā€“9 (2014)

    Google ScholarĀ 

  25. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645ā€“678 (2005)

    ArticleĀ  Google ScholarĀ 

  26. Cortes, C.: WSupport-vector network. Mach. Learn. 20, 1ā€“25 (1995)

    Google ScholarĀ 

  27. Zhang, X., Zheng, X.: Comparison of text sentiment analysis based on machine learning. In: 2016 15th International Symposium on Parallel and Distributed Computing (ISPDC), pp. 230ā€“233. IEEE (2016, July)

    Google ScholarĀ 

  28. Upadhyay, V.P., Panwar, S., Merugu, R., Panchariya, R.: Forecasting stock market movements using various kernel functions in support vector machine. In: Proceedings of the International Conference on Advances in Information Communication Technology & Computing, pp. 1ā€“5 (2016, August)

    Google ScholarĀ 

  29. Nayak, R.K., Mishra, D., Rath, A.K.: An optimized SVM-k-NN currency exchange forecasting model for Indian currency market. Neural Comput. & Applic. 31(7), 2995ā€“3021 (2019)

    ArticleĀ  Google ScholarĀ 

  30. Chandra, N.: Support vector machine classifier for predicting drug binding to P-glycoprotein. J. Proteomics Bioinform. 2, 193ā€“201 (2009)

    ArticleĀ  Google ScholarĀ 

  31. Prakash, K.B., Ruwali, A., Kanagachidambaresan, G.R.: Introduction to tensor flow, programming with tensor flow, EIA/Springer innovations in communication and computing. https://doi.org/10.1007/978-3-030-57077-4_1

  32. JHA, A.K., Ruwali, A., Prakash, K.B., Kanagachidambaresan, G.R.: Tensor flow basics, programming with tensor flow, EIA/Springer innovations in communication and computing. https://doi.org/10.1007/978-3-030-57077-4_2

  33. Kanagachidambaresan, G.R., Manohar Vinoothna, G., Prakash, K.B.: Visualizations, programming with tensor flow, EIA/Springer innovations in communication and computing. https://doi.org/10.1007/978-3-030-57077-4_3

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathy, R., Nayak, R.K. (2021). Eukaryotic Plasma Cholesterol Prediction from Human GPCRs Using K-Means with Support Vector Machine. In: Prakash, K.B., Kannan, R., Alexander, S., Kanagachidambaresan, G.R. (eds) Advanced Deep Learning for Engineers and Scientists. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-66519-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66519-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66518-0

  • Online ISBN: 978-3-030-66519-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics