Skip to main content

Adversarial Shape Perturbations on 3D Point Clouds

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12535))

Abstract

The importance of training robust neural network grows as 3D data is increasingly utilized in deep learning for vision tasks in robotics, drone control, and autonomous driving. One commonly used 3D data type is 3D point clouds, which describe shape information. We examine the problem of creating robust models from the perspective of the attacker, which is necessary in understanding how neural networks can be exploited. We explore two categories of attacks: distributional attacks that involve imperceptible perturbations to the distribution of points, and shape attacks that involve deforming the shape represented by a point cloud. We explore three possible shape attacks for attacking 3D point cloud classification and show that some of them are able to be effective even against preprocessing steps, like the previously proposed point-removal defenses. (Source code available at https://github.com/Daniel-Liu-c0deb0t/Adversarial-point-perturbations-on-3D-objects).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Vis. Comput. Graph. 5(4), 349–359 (1999)

    Article  Google Scholar 

  2. Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 387–402. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_25

    Chapter  Google Scholar 

  3. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine learning. Pattern Recognit. 84, 317–331 (2018)

    Article  Google Scholar 

  4. Brown, T.B., Mané, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial Patch. arXiv preprint arXiv:1712.09665 (2017)

  5. Cao, Y., et al.: Adversarial Objects Against LiDAR-Based Autonomous Driving Systems. arXiv preprint arXiv:1907.05418 (2019)

  6. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy, pp. 39–57. IEEE (2017)

    Google Scholar 

  7. Deng, H., Birdal, T., Ilic, S.: PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors. arXiv preprint arXiv:1808.10322 (2018)

  8. Dong, Y., et al.: Boosting Adversarial Attacks with Momentum. arXiv preprint (2018)

    Google Scholar 

  9. Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 29(4), 551–559 (1983)

    Article  MathSciNet  Google Scholar 

  10. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and Harnessing Adversarial Examples. arXiv preprint arXiv:1412.6572 (2014)

  11. Guo, C., Frank, J.S., Weinberger, K.Q.: Low frequency adversarial perturbation. arXiv preprint arXiv:1809.08758 (2018)

  12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial Examples in the Physical World. arXiv preprint arXiv:1607.02533 (2016)

  14. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial Machine Learning at Scale. arXiv preprint arXiv:1611.01236 (2016)

  15. Lee, D.T., Schachter, B.J.: Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci. 9(3), 219–242 (1980)

    Article  MathSciNet  Google Scholar 

  16. Liu, D., Yu, R., Su, H.: Extending Adversarial Attacks and Defenses to Deep 3D Point Cloud Classifiers. arXiv preprint arXiv:1901.03006 (2019)

  17. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards Deep Learning Models Resistant to Adversarial Attacks. arXiv preprint arXiv:1706.06083 (2017)

  18. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1765–1773 (2017)

    Google Scholar 

  19. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

    Google Scholar 

  20. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 372–387. IEEE (2016)

    Google Scholar 

  21. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 582–597. IEEE (2016)

    Google Scholar 

  22. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 (2017)

  23. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, no. 2, p. 4 (2017)

    Google Scholar 

  24. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)

    Google Scholar 

  25. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  26. Tsai, T., Yang, K., Ho, T.Y., Jin, Y.: Robust adversarial objects against deep learning models. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 954–962 (2020)

    Google Scholar 

  27. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-CNN: octree-based convolutional neural networks for 3D shape analysis. ACM Trans. Graph. 36(4), 72 (2017)

    Google Scholar 

  28. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) (2019)

    Google Scholar 

  29. Wicker, M., Kwiatkowska, M.: Robustness of 3D deep learning in an adversarial setting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11767–11775 (2019)

    Google Scholar 

  30. Wong, E., Kolter, J.Z.: Provable Defenses against Adversarial Examples via the Convex Outer Adversarial Polytope. arXiv preprint arXiv:1711.00851 (2017)

  31. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  32. Xiang, C., Qi, C.R., Li, B.: Generating 3D Adversarial Point Clouds. arXiv preprint arXiv:1809.07016 (2018)

  33. Yang, J., Zhang, Q., Fang, R., Ni, B., Liu, J., Tian, Q.: Adversarial Attack and Defense on Point Sets. arXiv preprint arXiv:1902.10899 (2019)

  34. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, vol. 93, pp. 311–321 (1993)

    Google Scholar 

  35. Zheng, T., Chen, C., Ren, K., et al.: Learning Saliency Maps for Adversarial Point-Cloud Generation. arXiv preprint arXiv:1812.01687 (2018)

  36. Zhou, H., Chen, K., Zhang, W., Fang, H., Zhou, W., Yu, N.: Deflecting 3D Adversarial Point Clouds Through Outlier-Guided Removal. arXiv preprint arXiv:1812.11017 (2018)

Download references

Acknowledgements

This work was supported in part by NSF awards CNS-1730158, ACI-1540112, ACI-1541349, OAC-1826967, the University of California Office of the President, and the University of California San Diego’s California Institute for Telecommunications and Information Technology/Qualcomm Institute. Thanks to CENIC for the 100Gpbs networks. We want to thank Battista Biggio from the University of Caliagri for feedback on a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, D., Yu, R., Su, H. (2020). Adversarial Shape Perturbations on 3D Point Clouds. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12535. Springer, Cham. https://doi.org/10.1007/978-3-030-66415-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66415-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66414-5

  • Online ISBN: 978-3-030-66415-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics