Skip to main content

Metal-Organic Frameworks for Environmental Applications

  • Chapter
  • First Online:
Porous Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 611 Accesses

Abstract

Environmental remediation is a worldwide concern to reverse the impact of rapid urbanization. Outstanding porosity, tunable pore structure and unique flexibility render metal-organic frameworks (MOF) and MOF based separation technologies as promising for air and water filtration. In this chapter, we summarize the design of MOF based adsorbents for pollutant removal. A special emphasis is given on their stability, membrane and fixed bed forming ability, role, performance and mechanism. In addition, limitations and further improvement scopes are discussed in comparison with the current state of the art systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bobbitt, N.S., Mendonca, M.L., Howarth, A.J., Islamoglu, T., Hupp, J.T., Farha, O.K., Snurr, R.Q.: Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem. Soc. Rev. 46, 3357–3385 (2017)

    Article  CAS  Google Scholar 

  2. Rojas, S., Horcajada, P.: Metal-organic frameworks for the removal of emerging organic contaminants in water. Chem. Rev. 120, 8378–8415 (2020)

    Article  CAS  Google Scholar 

  3. Dhaka, S., Kumar, R., Deep, A., Kurade, M.B., Ji, S.W., Jeon, B.H.: Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord. Chem. Rev. 380, 330–352 (2019)

    Article  CAS  Google Scholar 

  4. Johnson, D.M., Hokanson, D.R., Zhang, Q., Czupinski, K.D., Tang, J.: Feasibility of water purification technology in rural areas of developing countries. J. Environ. Manage. 88, 416–427 (2008)

    Article  CAS  Google Scholar 

  5. Furukawa, H., Cordova, K.E., O’Keeffe, M., Yaghi, O.M.: The chemistry and applications of metal-organic frameworks. Science 80, 341 (2013)

    Google Scholar 

  6. Britt, D., Furukawa, H., Wang, B., Glover, T.G., Yaghi, O.M.: Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc. Natl. Acad. Sci. U. S. A. 106, 20637–20640 (2009)

    Article  CAS  Google Scholar 

  7. Woellner, M., Hausdorf, S., Klein, N., Mueller, P., Smith, M.W., Kaskel, S.: Adsorption and detection of hazardous trace gases by metal-organic frameworks. Adv. Mater. 30, 1704679 (2018)

    Article  CAS  Google Scholar 

  8. Barea, E., Montoro, C., Navarro, J.A.R.: Toxic gas removal-metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev. 43, 5419–5430 (2014)

    Article  CAS  Google Scholar 

  9. Peterson, G.W., Mahle, J.J., DeCoste, J.B., Gordon, W.O., Rossin, J.A.: Extraordinary NO2 removal by the metal-organic framework UiO-66-NH 2. Angew. Chemie Int. Ed. 55, 6235–6238 (2016)

    Article  CAS  Google Scholar 

  10. Savage, M., Cheng, Y., Easun, T.L., Eyley, J.E., Argent, S.P., Warren, M.R., Lewis, W., Murray, C., Tang, C.C., Frogley, M.D., Cinque, G., Sun, J., Rudić, S., Murden, R.T., Benham, M.J., Fitch, A.N., Blake, A.J., Ramirez-Cuesta, A.J., Yang, S., Schröder, M.: Selective adsorption of sulfur dioxide in a robust metal-organic framework material. Adv. Mater. 28, 8705–8711 (2016)

    Article  CAS  Google Scholar 

  11. Roy, A., Srivastava, A.K., Singh, B., Shah, D., Mahato, T.H., Srivastava, A.: Kinetics of degradation of sulfur mustard and sarin simulants on HKUST-1 metal organic framework. Dalt. Trans. 41, 12346–12348 (2012)

    Article  CAS  Google Scholar 

  12. Hall, J.N., Bollini, P.: Structure, characterization, and catalytic properties of open-metal sites in metal organic frameworks. React. Chem. Eng. 4, 207–222 (2019)

    Article  CAS  Google Scholar 

  13. Mouchaham, G., Wang, S., Serre, C.: The stability of metal-organic frameworks. In: Metal-Organic Frameworks. pp. 1–28. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2018)

    Google Scholar 

  14. Ding, M., Cai, X., Jiang, H.L.: Improving MOF stability: approaches and applications. Chem. Sci. 10, 10209–10230 (2019)

    Article  CAS  Google Scholar 

  15. Leus, K., Bogaerts, T., De Decker, J., Depauw, H., Hendrickx, K., Vrielinck, H., Van Speybroeck, V., Van Der Voort, P.: Systematic study of the chemical and hydrothermal stability of selected “stable” Metal Organic Frameworks. Microporous Mesoporous Mater. 226, 110–116 (2016)

    Article  CAS  Google Scholar 

  16. McHugh, L.N., McPherson, M.J., McCormick, L.J., Morris, S.A., Wheatley, P.S., Teat, S.J., McKay, D., Dawson, D.M., Sansome, C.E.F., Ashbrook, S.E., Stone, C.A., Smith, M.W., Morris, R.E.: Hydrolytic stability in hemilabile metal–organic frameworks. Nat. Chem. 10, 1096–1102 (2018)

    Article  CAS  Google Scholar 

  17. Burtch, N.C., Jasuja, H., Walton, K.S.: Water stability and adsorption in metal-organic frameworks. Chem. Rev. 114, 10575–10612 (2014)

    Article  CAS  Google Scholar 

  18. Tan, K., Nijem, N., Gao, Y., Zuluaga, S., Li, J., Thonhauser, T., Chabal, Y.J.: Water interactions in metal organic frameworks. Cryst. Eng. Comm. 17, 247–260 (2015)

    Article  CAS  Google Scholar 

  19. Jiao, Y., Morelock, C.R., Burtch, N.C., Mounfield, W.P., Hungerford, J.T., Walton, K.S.: Tuning the kinetic water stability and adsorption interactions of Mg-MOF-74 by partial substitution with Co or Ni. Ind. Eng. Chem. Res. 54, 12408–12414 (2015)

    Article  CAS  Google Scholar 

  20. Canivet, J., Fateeva, A., Guo, Y., Coasne, B., Farrusseng, D.: Water adsorption in MOFs: fundamentals and applications. Chem. Soc. Rev. 43, 5594–5617 (2014)

    Article  CAS  Google Scholar 

  21. Low, J.J., Benin, A.I., Jakubczak, P., Abrahamian, J.F., Faheem, S.A., Willis, R.R.: Virtual high throughput screening confirmed experimentally: Porous coordination polymer hydration. J. Am. Chem. Soc. 131, 15834–15842 (2009)

    Article  CAS  Google Scholar 

  22. Wang, S., Lee, J.S., Wahiduzzaman, M., Park, J., Muschi, M., Martineau-Corcos, C., Tissot, A., Cho, K.H., Marrot, J., Shepard, W., Maurin, G., Chang, J.S., Serre, C.: A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration. Nat. Energy. 3, 985–993 (2018)

    Article  CAS  Google Scholar 

  23. Padial, N.M., Quartapelle Procopio, E., Montoro, C., López, E., Oltra, J.E., Colombo, V., Maspero, A., Masciocchi, N., Galli, S., Senkovska, I., Kaskel, S., Barea, E., Navarro, J.A.R.: Highly Hydrophobic Isoreticular Porous Metal-Organic Frameworks for the Capture of Harmful Volatile Organic Compounds. Angew. Chemie Int. Ed. 52, 8290–8294 (2013)

    Google Scholar 

  24. Drache, F., Bon, V., Senkovska, I., Marschelke, C., Synytska, A., Kaskel, S.: Postsynthetic inner-surface functionalization of the highly stable zirconium-based metal-organic framework DUT-67. Inorg. Chem. 55, 7206–7213 (2016)

    Article  CAS  Google Scholar 

  25. Khan, N.A., Hasan, Z., Jhung, S.H.: Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J. Hazard. Mater. 244–245, 444–456 (2013)

    Article  CAS  Google Scholar 

  26. Khabzina, Y., Farrusseng, D.: Unravelling ammonia adsorption mechanisms of adsorbents in humid conditions. Microporous. Mesoporous. Mater. 265, 143–148 (2018)

    Article  CAS  Google Scholar 

  27. Vikrant, K., Kumar, V., Kim, K.H., Kukkar, D.: Metal-organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia. J. Mater. Chem. A. 5, 22877–22896 (2017)

    Article  CAS  Google Scholar 

  28. Katz, M.J., Howarth, A.J., Moghadam, P.Z., DeCoste, J.B., Snurr, R.Q., Hupp, J.T., Farha, O.K.: High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27. Dalt. Trans. 45, 4150–4153 (2016)

    Article  CAS  Google Scholar 

  29. Weston, M.H., Morris, W., Siu, P.W., Hoover, W.J., Cho, D., Richardson, R.K., Farha, O.K.: Phosphine gas adsorption in a series of metal-organic frameworks. Inorg. Chem. 54, 8162–8164 (2015)

    Article  CAS  Google Scholar 

  30. Hinks, N.J., McKinlay, A.C., Xiao, B., Wheatley, P.S., Morris, R.E.: Metal organic frameworks as NO delivery materials for biological applications. Microporous Mesoporous Mater. 129, 330–334 (2010)

    Article  CAS  Google Scholar 

  31. Cattaneo, D., Warrender, S.J., Duncan, M.J., Kelsall, C.J., Doherty, M.K., Whitfield, P.D., Megson, I.L., Morris, R.E.: Tuning the nitric oxide release from CPO-27 MOFs. RSC Adv. 6, 14059–14067 (2016)

    Article  CAS  Google Scholar 

  32. McKinlay, A.C., Xiao, B., Wragg, D.S., Wheatley, P.S., Megson, I.L., Morris, R.E.: Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in porous metal organic frameworks. J. Am. Chem. Soc. 130, 10440–10444 (2008)

    Article  CAS  Google Scholar 

  33. Xiao, B., Wheatley, P.S., Zhao, X., Fletcher, A.J., Fox, S., Rossi, A.G., Megson, I.L., Bordiga, S., Regli, L., Thomas, K.M., Morris, R.E.: High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework. J. Am. Chem. Soc. 129, 1203–1209 (2007)

    Article  CAS  Google Scholar 

  34. Sun, W., Lin, L.-C., Peng, X., Smit, B.: Computational screening of porous metal-organic frameworks and zeolites for the removal of SO2 and NOx from flue gases. AIChE J. 60, 2314–2323 (2014)

    Article  CAS  Google Scholar 

  35. Hasan, Z., Tong, M., Jung, B.K., Ahmed, I., Zhong, C., Jhung, S.H.: Adsorption of pyridine over amino-functionalized metal-organic frameworks: attraction via hydrogen bonding versus base-base repulsion. J. Phys. Chem. C 118, 21049–21056 (2014)

    Article  CAS  Google Scholar 

  36. Zhang, L., Wang, J., Du, T., Zhang, W., Zhu, W., Yang, C., Yue, T., Sun, J., Li, T., Wang, J.: NH2-MIL-53(Al) metal-organic framework as the smart platform for simultaneous high-performance detection and removal of Hg2+. Inorg. Chem. 58, 12573–12581 (2019)

    Article  CAS  Google Scholar 

  37. Li, L., Shi, Z., Zhu, H., Hong, W., Xie, F., Sun, K.: Adsorption of azo dyes from aqueous solution by the hybrid MOFs/GO. Water Sci. Technol. 73, 1728–1737 (2016)

    Article  CAS  Google Scholar 

  38. Zhao, Z., Wang, S., Yang, Y., Li, X., Li, J., Li, Z.: Competitive adsorption and selectivity of benzene and water vapor on the microporous metal organic frameworks (HKUST-1). Chem. Eng. J. 259, 79–89 (2015)

    Article  CAS  Google Scholar 

  39. Li, Y., Wang, X., Xu, D., Chung, J.D., Kaviany, M., Huang, B.: H2O adsorption/desorption in MOF-74: Ab initio molecular dynamics and experiments. J. Phys. Chem. C 119, 13021–13031 (2015)

    Article  CAS  Google Scholar 

  40. Ghosh, P., Colón, Y.J., Snurr, R.Q.: Water adsorption in UiO-66: the importance of defects. Chem. Commun. 50, 11329–11331 (2014)

    Article  CAS  Google Scholar 

  41. Furukawa, H., Gándara, F., Zhang, Y.B., Jiang, J., Queen, W.L., Hudson, M.R., Yaghi, O.M.: Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014)

    Article  CAS  Google Scholar 

  42. Küsgens, P., Rose, M., Senkovska, I., Fröde, H., Henschel, A., Siegle, S., Kaskel, S.: Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater. 120, 325–330 (2009)

    Article  CAS  Google Scholar 

  43. Akiyama, G., Matsuda, R., Kitagawa, S.: Highly porous and stable coordination polymers as water sorption materials. Chem. Lett. 39, 360–361 (2010)

    Article  CAS  Google Scholar 

  44. Ehrenmann, J., Henninger, S.K., Janiak, C.: Water adsorption characteristics of MIL-101 for heat-transformation applications of MOFs. Eur. J. Inorg. Chem. 2011, 471–474 (2011)

    Article  CAS  Google Scholar 

  45. Li, P., Chen, J., Zhang, J., Wang, X.: Water stability and competition effects toward CO2 adsorption on metal organic frameworks. Sep. Purif. Rev. 44, 19–27 (2015)

    Article  CAS  Google Scholar 

  46. Yazaydin, A.Ö., Benin, A.I., Faheem, S.A., Jakubczak, P., Low, J.J., Richard, R.W., Snurr, R.Q.: Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem. Mater. 21, 1425–1430 (2009)

    Article  CAS  Google Scholar 

  47. Decoste, J.B., Peterson, G.W.: Metal-organic frameworks for air purification of toxic chemicals. Chem. Rev. 114, 5695–5727 (2014)

    Article  CAS  Google Scholar 

  48. Kumar, P., Kim, K.H., Kwon, E.E., Szulejko, J.E.: Metal-organic frameworks for the control and management of air quality: advances and future direction. J. Mater. Chem. A. 4, 345–361 (2015)

    Article  CAS  Google Scholar 

  49. Dias, E.M., Petit, C.: Towards the use of metal-organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field. J. Mater. Chem. A. 3, 22484–22506 (2015)

    Article  CAS  Google Scholar 

  50. Ackley, M.W., Yang, R.T.: Adsorption characteristics of high-exchange clinoptilolites. Ind. Eng. Chem. Res. 30, 2523–2530 (1991)

    Article  CAS  Google Scholar 

  51. Wang, S., Peng, Y.: Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 156, 11–24 (2010)

    Article  CAS  Google Scholar 

  52. Kirchner, A., Brown, I.W.M., Bowden, M.E., Kemmitt, T., Smith, G.: Preparation and high-temperature characterisation of nanostructured alumina ceramic membranes for gas purification. Curr. Appl. Phys. 8, 451–454 (2008)

    Article  Google Scholar 

  53. Gupta, V.K., Saleh, T.A.: Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ. Sci. Pollut. Res. 20, 2828–2843 (2013)

    Article  CAS  Google Scholar 

  54. Permyakova, A., Skrylnyk, O., Courbon, E., Affram, M., Wang, S., Lee, U.H., Valekar, A.H., Nouar, F., Mouchaham, G., Devic, T., De Weireld, G., Chang, J.S., Steunou, N., Frère, M., Serre, C.: Synthesis optimization, shaping, and heat reallocation evaluation of the hydrophilic metal-organic framework MIL-160(Al). Chemsuschem 10, 1419–1426 (2017)

    Article  CAS  Google Scholar 

  55. Weston, M.H., Peterson, G.W., Browe, M.A., Jones, P., Farha, O.K., Hupp, J.T., Nguyen, S.B.T.: Removal of airborne toxic chemicals by porous organic polymers containing metal-catecholates. Chem. Commun. 49, 2995–2997 (2013)

    Article  CAS  Google Scholar 

  56. Kuehl, V.A., Yin, J., Duong, P.H.H., Mastorovich, B., Newell, B., Li-Oakey, K.D., Parkinson, B.A., Hoberg, J.O.: A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving. J. Am. Chem. Soc. 140, 18200–18207 (2018)

    Article  CAS  Google Scholar 

  57. Krishna, R., Long, J.R.: Screening metal-organic frameworks by analysis of transient breakthrough of gas mixtures in a fixed bed adsorber. J. Phys. Chem. C 115, 12941–12950 (2011)

    Article  CAS  Google Scholar 

  58. Belmabkhout, Y., Pirngruber, G., Jolimaitre, E., Methivier, A.: A complete experimental approach for synthesis gas separation studies using static gravimetric and column breakthrough experiments. Adsorption 13, 341–349 (2007)

    Article  CAS  Google Scholar 

  59. Beerdsen, E., Dubbeldam, D., Smit, B.: Understanding diffusion in nanoporous materials. Phys. Rev. Lett. 96, 044501 (2006)

    Article  CAS  Google Scholar 

  60. Shafeeyan, M.S., Wan Daud, W.M.A., Shamiri, A.: A review of mathematical modeling of fixed-bed columns for carbon dioxide adsorption (2014)

    Google Scholar 

  61. Sotelo, J.L., Ovejero, G., Rodríguez, A., Álvarez, S., García, J.: Adsorption of carbamazepine in fixed bed columns: experimental and modeling studies. Sep. Sci. Technol. 48, 2626–2637 (2013)

    Article  CAS  Google Scholar 

  62. Kärger, J., Ruthven, D.M.: Diffusion in nanoporous materials: fundamental principles, insights and challenges. New J. Chem. 40, 4027–4048 (2016)

    Article  CAS  Google Scholar 

  63. Kabtamu, D.M., Wu, Y., Li, F.: Hierarchically porous metal–organic frameworks: synthesis strategies, structure(s), and emerging applications in decontamination. J. Hazard. Mater. 122765 (2020)

    Google Scholar 

  64. Peng, Y., Krungleviciute, V., Eryazici, I., Hupp, J.T., Farha, O.K., Yildirim, T.: Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. J. Am. Chem. Soc. 135, 11887–11894 (2013)

    Article  CAS  Google Scholar 

  65. Shah, B.B., Kundu, T., Zhao, D.: Mechanical properties of shaped metal-organic frameworks. Top. Curr. Chem. 377, 1–34 (2019)

    CAS  Google Scholar 

  66. Valizadeh, B., Nguyen, T.N., Stylianou, K.C.: Shape engineering of metal–organic frameworks. Polyhedron 145, 1–15 (2018)

    Article  CAS  Google Scholar 

  67. Hindocha, S., Poulston, S.: Study of the scale-up, formulation, ageing and ammonia adsorption capacity of MIL-100(Fe), Cu-BTC and CPO-27(Ni) for use in respiratory protection filters. Faraday Discuss. 201, 113–125 (2017)

    Article  CAS  Google Scholar 

  68. Valekar, A.H., Lee, S.G., Cho, K.H., Lee, U.H., Lee, J.S., Yoon, J.W., Hwang, Y.K., Cho, S.J., Chang, J.S.: Shaping of porous metal-organic framework granules using mesoporous ρ-alumina as a binder. RSC Adv. 7, 55767–55777 (2017)

    Article  CAS  Google Scholar 

  69. Manisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E.: Environmental and health impacts of air pollution: a review. Front. Public Heal. 8, 14 (2020)

    Article  Google Scholar 

  70. Mannucci, P.M., Franchini, M.: Health effects of ambient air pollution in developing countries. Int. J. Environ. Res. Public Health. 14 (2017)

    Google Scholar 

  71. Reed, D.A., Xiao, D.J., Gonzalez, M.I., Darago, L.E., Herm, Z.R., Grandjean, F., Long, J.R.: Reversible CO scavenging via adsorbate-dependent spin state transitions in an iron(II)-triazolate metal-organic framework. J. Am. Chem. Soc. 138, 5594–5602 (2016)

    Article  CAS  Google Scholar 

  72. Peng, J., Xian, S., Xiao, J., Huang, Y., Xia, Q., Wang, H., Li, Z.: A supported Cu(I)@MIL-100(Fe) adsorbent with high CO adsorption capacity and CO/N2 selectivity. Chem. Eng. J. 270, 282–289 (2015)

    Article  CAS  Google Scholar 

  73. Seoane, B., Coronas, J., Gascon, I., Benavides, M.E., Karvan, O., Caro, J., Kapteijn, F., Gascon, J.: Metal-organic framework based mixed matrix membranes: A solution for highly efficient CO2 capture? Chem. Soc. Rev. 44, 2421–2454 (2015)

    Article  CAS  Google Scholar 

  74. Choi, S., Watanabe, T., Bae, T.H., Sholl, D.S., Jones, C.W.: Modification of the Mg/DOBDC MOF with amines to enhance CO 2 adsorption from ultradilute gases. J. Phys. Chem. Lett. 3, 1136–1141 (2012)

    Article  CAS  Google Scholar 

  75. McDonald, T.M., Lee, W.R., Mason, J.A., Wiers, B.M., Hong, C.S., Long, J.R.: Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg 2(dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012)

    Article  CAS  Google Scholar 

  76. Siegelman, R.L., McDonald, T.M., Gonzalez, M.I., Martell, J.D., Milner, P.J., Mason, J.A., Berger, A.H., Bhown, A.S., Long, J.R.: Controlling cooperative CO2 adsorption in diamine-appended Mg2(dobpdc) metal-organic frameworks. J. Am. Chem. Soc. 139, 10526–10538 (2017)

    Article  CAS  Google Scholar 

  77. Demessence, A., D’Alessandro, D.M., Foo, M.L., Long, J.R.: Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. J. Am. Chem. Soc. 131, 8784–8786 (2009)

    Article  CAS  Google Scholar 

  78. Liu, J., Tian, J., Thallapally, P.K., McGrail, B.P.: Selective CO 2 capture from flue gas using metal-organic frameworks-a fixed bed study. J. Phys. Chem. C 116, 9575–9581 (2012)

    Article  CAS  Google Scholar 

  79. Jasuja, H., Peterson, G.W., Decoste, J.B., Browe, M.A., Walton, K.S.: Evaluation of MOFs for air purification and air quality control applications: ammonia removal from air. Chem. Eng. Sci. 124, 118–124 (2015)

    Article  CAS  Google Scholar 

  80. Klein, N., Senkovska, I., Gedrich, K., Stoeck, U., Henschel, A., Mueller, U., Kaskel, S.: A Mesoporous Metala Organic Framework. Angew. Chemie Int. Ed. 48, 9954–9957 (2009)

    Article  CAS  Google Scholar 

  81. Spanopoulos, I., Xydias, P., Malliakas, C.D., Trikalitis, P.N.: A straight forward route for the development of metal-organic frameworks functionalized with aromatic-OH groups: synthesis, characterization, and gas (N2, Ar, H2, CO2, CH4, NH3) sorption properties. Inorg. Chem. 52, 855–862 (2013)

    Article  CAS  Google Scholar 

  82. Peterson, G.W., Rossin, J.A., Decoste, J.B., Killops, K.L., Browe, M., Valdes, E., Jones, P.: Zirconium hydroxide-metal-organic framework composites for toxic chemical removal. Ind. Eng. Chem. Res. 52, 5462–5469 (2013)

    Article  CAS  Google Scholar 

  83. Rieth, A.J., Tulchinsky, Y., Dincã, M.: High and reversible ammonia uptake in mesoporous azolate metal-organic frameworks with open Mn Co, and Ni sites. J. Am. Chem. Soc. 138, 9401–9404 (2016)

    Article  CAS  Google Scholar 

  84. Chen, Y., Yang, C., Wang, X., Yang, J., Ouyang, K., Li, J.: Kinetically controlled ammonia vapor diffusion synthesis of a Zn(II) MOF and its H2O/NH3 adsorption properties. J. Mater. Chem. A. 4, 10345–10351 (2016)

    Article  CAS  Google Scholar 

  85. Wisser, D., Wisser, F.M., Raschke, S., Klein, N., Leistner, M., Grothe, J., Brunner, E., Kaskel, S.: Biological Chitin-MOF composites with hierarchical pore systems for air-filtration applications. Angew. Chemie Int. Ed. 54, 12588–12591 (2015)

    Article  CAS  Google Scholar 

  86. Zhao, J., Losego, M.D., Lemaire, P.C., Williams, P.S., Gong, B., Atanasov, S.E., Blevins, T.M., Oldham, C.J., Walls, H.J., Shepherd, S.D., Browe, M.A., Peterson, G.W., Parsons, G.N.: Highly adsorptive, MOF-functionalized nonwoven fiber mats for hazardous gas capture enabled by atomic layer deposition. Adv. Mater. Interfaces. 1, 1400040 (2014)

    Article  CAS  Google Scholar 

  87. Ebrahim, A.M., Bandosz, T.J.: Effect of amine modification on the properties of zirconium-carboxylic acid based materials and their applications as NO2 adsorbents at ambient conditions. Microporous Mesoporous Mater. 188, 149–162 (2014)

    Article  CAS  Google Scholar 

  88. DeCoste, J.B., Demasky, T.J., Katz, M.J., Farha, O.K., Hupp, J.T.: A UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals. New J. Chem. 39, 2396–2399 (2015)

    Article  CAS  Google Scholar 

  89. Yang, S., Liu, L., Sun, J., Thomas, K.M., Davies, A.J., George, M.W., Blake, A.J., Hill, A.H., Fitch, A.N., Tang, C.C., Schröder, M.: Irreversible network transformation in a dynamic porous host catalyzed by sulfur dioxide. J. Am. Chem. Soc. 135, 4954–4957 (2013)

    Article  CAS  Google Scholar 

  90. Cui, X., Yang, Q., Yang, L., Krishna, R., Zhang, Z., Bao, Z., Wu, H., Ren, Q., Zhou, W., Chen, B., Xing, H.: Ultrahigh and selective SO2 uptake in inorganic anion-pillared hybrid porous materials. Adv. Mater. 29, 1606929 (2017)

    Article  CAS  Google Scholar 

  91. Belmabkhout, Y., Pillai, R.S., Alezi, D., Shekhah, O., Bhatt, P.M., Chen, Z., Adil, K., Vaesen, S., De Weireld, G., Pang, M., Suetin, M., Cairns, A.J., Solovyeva, V., Shkurenko, A., El Tall, O., Maurin, G., Eddaoudi, M.: Metal-organic frameworks to satisfy gas upgrading demands: fine-tuning the soc-MOF platform for the operative removal of H2S. J. Mater. Chem. A. 5, 3293–3303 (2017)

    Article  CAS  Google Scholar 

  92. Bhatt, P.M., Belmabkhout, Y., Assen, A.H., Weseliński, Ł.J., Jiang, H., Cadiau, A., Xue, D.X., Eddaoudi, M.: Isoreticular rare earth fcu-MOFs for the selective removal of H2S from CO2 containing gases. Chem. Eng. J. 324, 392–396 (2017)

    Article  CAS  Google Scholar 

  93. Mohideen, M.I.H., Pillai, R.S., Adil, K., Bhatt, P.M., Belmabkhout, Y., Shkurenko, A., Maurin, G., Eddaoudi, M.: A fine-tuned MOF for gas and vapor separation: a multipurpose adsorbent for acid gas removal, dehydration, and BTX sieving. Chem 3, 822–833 (2017)

    Article  CAS  Google Scholar 

  94. Hasan, Z., Jhung, S.H.: Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions. J. Hazard. Mater. 283, 329–339 (2015)

    Article  CAS  Google Scholar 

  95. Massoudinejad, M., Ghaderpoori, M., Shahsavani, A., Jafari, A., Kamarehie, B., Ghaderpoury, A., Amini, M.M.: Ethylenediamine-functionalized cubic ZIF-8 for arsenic adsorption from aqueous solution: Modeling, isotherms, kinetics and thermodynamics. J. Mol. Liq. 255, 263–268 (2018)

    Article  CAS  Google Scholar 

  96. Wang, C., Luan, J., Wu, C.: Metal-organic frameworks for aquatic arsenic removal. Water Res. 158, 370–382 (2019)

    Article  CAS  Google Scholar 

  97. Sun, J., Zhang, X., Zhang, A., Liao, C.: Preparation of Fe–Co based MOF-74 and its effective adsorption of arsenic from aqueous solution. J. Environ. Sci. (China) 80, 197–207 (2019)

    Article  Google Scholar 

  98. Yang, J.C., Yin, X.B.: CoFe2O4 @MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity. Sci. Rep. 7, 1–15 (2017)

    CAS  Google Scholar 

  99. Wang, C., Liu, X., Chen, J.P., Li, K.: Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. Sci. Rep. 5, 1–10 (2015)

    Google Scholar 

  100. Bhatnagar, A., Kumar, E., Sillanpää, M.: Fluoride removal from water by adsorption—a review. Chem. Eng. J. 171, 811–840 (2011)

    Article  CAS  Google Scholar 

  101. Zhu, X.H., Yang, C.X., Yan, X.P.: Metal-organic framework-801 for efficient removal of fluoride from water. Microporous Mesoporous Mater. 259, 163–170 (2018)

    Article  CAS  Google Scholar 

  102. Massoudinejad, M., Ghaderpoori, M., Shahsavani, A., Amini, M.M.: Adsorption of fluoride over a metal organic framework Uio-66 functionalized with amine groups and optimization with response surface methodology. J. Mol. Liq. 221, 279–286 (2016)

    Article  CAS  Google Scholar 

  103. karmakar, S., Dechnik, J., Janiak, C., De, S.: Aluminium fumarate metal-organic framework: a super adsorbent for fluoride from water. J. Hazard. Mater. 303, 10–20 (2016)

    Google Scholar 

  104. Wang, X., Zhu, H., Sun, T., Liu, Y., Han, T., Lu, J., Dai, H., Zhai, L.: Synthesis and study of an efficient metal-organic framework adsorbent (MIL-96(Al)) for fluoride removal from water. J. Nanomater. 2019, 3128179 (2019)

    Article  Google Scholar 

  105. Abbasi, A., Moradpour, T., Van Hecke, K.: A new 3D cobalt (II) metal-organic framework nanostructure for heavy metal adsorption. Inorganica Chim. Acta. 430, 261–267 (2015)

    Article  CAS  Google Scholar 

  106. Rahimi, E., Mohaghegh, N.: Removal of toxic metal ions from sungun acid rock drainage using mordenite zeolite, graphene nanosheets, and a novel metal-organic framework. Mine Water Environ 35

    Google Scholar 

  107. Luo, X., Ding, L., Luo, J.: Adsorptive removal of Pb(II) ions from aqueous samples with amino-functionalization of metal-organic frameworks MIL-101(Cr). J. Chem. Eng. Data 60, 1732–1743 (2015)

    Article  CAS  Google Scholar 

  108. Defuria, M.D., Zeller, M., Genna, D.T.: Removal of pharmaceuticals from water via π-π stacking interactions in perfluorinated metal-organic frameworks. Cryst. Growth Des. 16, 3530–3534 (2016)

    Article  CAS  Google Scholar 

  109. Sarker, M., Shin, S., Jeong, J.H., Jhung, S.H.: Mesoporous metal-organic framework PCN-222(Fe): promising adsorbent for removal of big anionic and cationic dyes from water. Chem. Eng. J. 371, 252–259 (2019)

    Article  CAS  Google Scholar 

  110. Wang, X.S., Liang, J., Li, L., Lin, Z.J., Bag, P.P., Gao, S.Y., Huang, Y.B., Cao, R.: An anion metal-organic framework with lewis basic sites-rich toward charge-exclusive cationic dyes separation and size-selective catalytic reaction. Inorg. Chem. 55, 2641–2649 (2016)

    Article  CAS  Google Scholar 

  111. Jiang, C., Fu, B., Cai, H., Cai, T.: Efficient adsorptive removal of Congo red from aqueous solution by synthesized zeolitic imidazolate framework-8. Chem. Speciat. Bioavailab. 28, 199–208 (2016)

    Article  CAS  Google Scholar 

  112. Thanh Tu, N.T., Thien, T.V., Du, P.D., Thanh Chau, V.T., Mau, T.X., Khieu, D.Q.: Adsorptive removal of Congo red from aqueous solution using zeolitic imidazolate framework-67. J. Environ. Chem. Eng. 6, 2269–2280 (2018)

    Google Scholar 

  113. Embaby, M.S., Elwany, S.D., Setyaningsih, W., Saber, M.R.: The adsorptive properties of UiO-66 towards organic dyes: a record adsorption capacity for the anionic dye Alizarin Red S. Chinese J. Chem. Eng. 26, 731–739 (2018)

    Article  CAS  Google Scholar 

  114. Jin, L.N., Qian, X.Y., Wang, J.G., Aslan, H., Dong, M.: MIL-68 (In) nano-rods for the removal of Congo red dye from aqueous solution. J. Colloid Interface Sci. 453, 270–275 (2015)

    Article  CAS  Google Scholar 

  115. Guo, R., Cai, X., Liu, H., Yang, Z., Meng, Y., Chen, F., Li, Y., Wang, B.: In situ growth of metal-organic frameworks in three-dimensional aligned lumen arrays of wood for rapid and highly efficient organic pollutant removal. Environ. Sci. Technol. 53, 2705–2712 (2019)

    Article  CAS  Google Scholar 

  116. Koros, W.J., Zhang, C.: Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017)

    Article  CAS  Google Scholar 

  117. Baker, R.W.: Membrane Technology and Applications 3rd edition. Jon Wiley & Son. (2012)

    Google Scholar 

  118. Rangnekar, N., Mittal, N., Elyassi, B., Caro, J., Tsapatsis, M.: Zeolite membranes—a review and comparison with MOFs. Chem. Soc. Rev. 44, 7128–7154 (2015)

    Article  CAS  Google Scholar 

  119. Comesaña-Gándara, B., Chen, J., Bezzu, C.G., Carta, M., Rose, I., Ferrari, M.C., Esposito, E., Fuoco, A., Jansen, J.C., McKeown, N.B.: Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci. 12, 2733–2740 (2019)

    Article  Google Scholar 

  120. Robeson, L.M.: The upper bound revisited. J. Memb. Sci. 320, 390–400 (2008)

    Article  CAS  Google Scholar 

  121. Chung, T.S., Jiang, L.Y., Li, Y., Kulprathipanja, S.: Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32, 483–507 (2007)

    Article  CAS  Google Scholar 

  122. Denny, M.S., Moreton, J.C., Benz, L., Cohen, S.M.: Metal-organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 1–17 (2016)

    Article  CAS  Google Scholar 

  123. Galizia, M., Chi, W.S., Smith, Z.P., Merkel, T.C., Baker, R.W., Freeman, B.D.: 50th anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities. Macromolecules 50, 7809–7843 (2017)

    Article  CAS  Google Scholar 

  124. Liu, L., Xie, X., Qi, S., Li, R., Zhang, X., Song, X., Gao, C.: Thin film nanocomposite reverse osmosis membrane incorporated with UiO-66 nanoparticles for enhanced boron removal. J. Memb. Sci. 580, 101–109 (2019)

    Article  CAS  Google Scholar 

  125. Li, W., Zhang, Y., Li, Q., Zhang, G.: Metal-organic framework composite membranes: synthesis and separation applications. Chem. Eng. Sci. 135, 232–257 (2015)

    Article  CAS  Google Scholar 

  126. Ma, L., Svec, F., Lv, Y., Tan, T.: Engineering of the filler/polymer interface in metal–organic framework‐based mixed‐matrix membranes to enhance gas separation. Chem. An Asian J. 14, 3502–3514 (2019)

    Google Scholar 

  127. Bae, T.H., Lee, J.S., Qiu, W., Koros, W.J., Jones, C.W., Nair, S.: A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angew. Chemie Int. Ed. 49, 9863–9866 (2010)

    Article  CAS  Google Scholar 

  128. Wijmans, J.G., Baker, R.W.: The solution-diffusion model: a review. J. Memb. Sci. 107, 1–21 (1995)

    Article  CAS  Google Scholar 

  129. Fick, A.: Ueber diffusion. Ann. Phys. 170, 59–86 (1855)

    Article  Google Scholar 

  130. Maxwell, J.C.: A treatise on electricity and magnetism. Dover Publications Inc, New York (1954)

    Google Scholar 

  131. Van Der Bruggen, B., Vandecasteele, C., Van Gestel, T., Doyen, W., Leysen, R.: A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 22, 46–56 (2003)

    Article  Google Scholar 

  132. Von Morgan, P.W.: Condensation Polymers: By Interfacial and Solution Methods. Interscience Publishers, Geneva (1965)

    Google Scholar 

  133. Baker, R.W., Low, B.T.: Gas separation membrane materials: a perspective. Macromolecules 47, 6999–7013 (2014)

    Article  CAS  Google Scholar 

  134. Jeong, B.H., Hoek, E.M.V., Yan, Y., Subramani, A., Huang, X., Hurwitz, G., Ghosh, A.K., Jawor, A.: Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Memb. Sci. 294, 1–7 (2007)

    Article  CAS  Google Scholar 

  135. Sorribas, S., Gorgojo, P., Téllez, C., Coronas, J., Livingston, A.G.: High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc. 135, 15201–15208 (2013)

    Article  CAS  Google Scholar 

  136. Merkel, T.C., Lin, H., Wei, X., Baker, R.: Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Memb. Sci. 359, 126–139 (2010)

    Article  CAS  Google Scholar 

  137. Yong, W.F., Chung, T.S., Weber, M., Maletzko, C.: New polyethersulfone (PESU) hollow fiber membranes for CO2 capture. J. Memb. Sci. 552, 305–314 (2018)

    Article  CAS  Google Scholar 

  138. Zornoza, B., Martinez-Joaristi, A., Serra-Crespo, P., Tellez, C., Coronas, J., Gascon, J., Kapteijn, F.: Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chem. Commun. 47, 9522–9524 (2011)

    Article  CAS  Google Scholar 

  139. Basu, S., Cano-Odena, A., Vankelecom, I.F.J.: MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Sep. Purif. Technol. 81, 31–40 (2011)

    Article  CAS  Google Scholar 

  140. Car, A., Stropnik, C., Peinemann, K.V.: Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation. Desalination 200, 424–426 (2006)

    Article  CAS  Google Scholar 

  141. Nuhnen, A., Klopotowski, M., Tanh Jeazet, H.B., Sorribas, S., Zornoza, B., Téllez, C., Coronas, J., Janiak, C.: High performance MIL-101(Cr)@6FDA-: M PD and MOF-199@6FDA- m PD mixed-matrix membranes for CO2/CH4 separation. Dalt. Trans. 49, 1822–1829 (2020)

    Article  CAS  Google Scholar 

  142. Zhang, Y., Musselman, I.H., Ferraris, J.P., Balkus, K.J.: Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu-BPY-HFS. J. Memb. Sci. 313, 170–181 (2008)

    Article  CAS  Google Scholar 

  143. Perez, E.V., Balkus, K.J., Ferraris, J.P., Musselman, I.H.: Mixed-matrix membranes containing MOF-5 for gas separations. J. Memb. Sci. 328, 165–173 (2009)

    Article  CAS  Google Scholar 

  144. Bae, T.H., Long, J.R.: CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy Environ. Sci. 6, 3565–3569 (2013)

    Article  CAS  Google Scholar 

  145. Dorosti, F., Alizadehdakhel, A.: Fabrication and investigation of PEBAX/Fe-BTC, a high permeable and CO2 selective mixed matrix membrane. Chem. Eng. Res. Des. 136, 119–128 (2018)

    Article  CAS  Google Scholar 

  146. Nabais, A.R., Ribeiro, R.P.P.L., Mota, J.P.B., Alves, V.D., Esteves, I.A.A.C., Neves, L.A.: CO2/N2 gas separation using Fe(BTC)-based mixed matrix membranes: a view on the adsorptive and filler properties of metal-organic frameworks. Sep. Purif. Technol. 202, 174–184 (2018)

    Article  CAS  Google Scholar 

  147. Couck, S., Denayer, J.F.M., Baron, G.V., Rémy, T., Gascon, J., Kapteijn, F.: An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. J. Am. Chem. Soc. 131, 6326–6327 (2009)

    Article  CAS  Google Scholar 

  148. Rodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., Kapteijn, F., Llabrés I Xamena, F.X., Gascon, J.: Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015)

    Google Scholar 

  149. Venna, S.R., Lartey, M., Li, T., Spore, A., Kumar, S., Nulwala, H.B., Luebke, D.R., Rosi, N.L., Albenze, E.: Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. J. Mater. Chem. A. 3, 5014–5022 (2015)

    Article  CAS  Google Scholar 

  150. Aceituno Melgar, V.M., Kim, J., Othman, M.R.: Zeolitic imidazolate framework membranes for gas separation: a review of synthesis methods and gas separation performance. J. Ind. Eng. Chem. 28, 1–15 (2015)

    Article  CAS  Google Scholar 

  151. Al-Maythalony, B.A., Alloush, A.M., Faizan, M., Dafallah, H., Elgzoly, M.A.A., Seliman, A.A.A., Al-Ahmed, A., Yamani, Z.H., Habib, M.A.M., Cordova, K.E., Yaghi, O.M.: Tuning the interplay between selectivity and permeability of ZIF-7 mixed matrix membranes. ACS Appl. Mater. Interfaces. 9, 33401–33407 (2017)

    Article  CAS  Google Scholar 

  152. Li, T., Pan, Y., Peinemann, K.V., Lai, Z.: Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J. Memb. Sci. 425–426, 235–242 (2013)

    Article  CAS  Google Scholar 

  153. Li, Y., Liang, F., Bux, H., Yang, W., Caro, J.: Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J. Memb. Sci. 354, 48–54 (2010)

    Article  CAS  Google Scholar 

  154. Wijenayake, S.N., Panapitiya, N.P., Versteeg, S.H., Nguyen, C.N., Goel, S., Balkus, K.J., Musselman, I.H., Ferraris, J.P.: Surface cross-linking of ZIF-8/polyimide mixed matrix membranes (MMMs) for gas separation. Ind. Eng. Chem. Res. 52, 6991–7001 (2013)

    Article  CAS  Google Scholar 

  155. Xiang, L., Sheng, L., Wang, C., Zhang, L., Pan, Y., Li, Y.: Amino-functionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation. Adv. Mater. 29 (2017)

    Google Scholar 

  156. Yang, T., Shi, G.M., Chung, T.S.C.: Symmetric and asymmetric zeolitic imidazolate frameworks (ZIFs)/Polybenzimidazole (PBI) nanocomposite membranes for hydrogen purifi cation at high temperatures. Adv. Energy Mater. 2, 1358–1367 (2012)

    Article  CAS  Google Scholar 

  157. Yang, T., Xiao, Y., Chung, T.S.: Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification. Energy Environ. Sci. 4, 4171–4180 (2011)

    Article  CAS  Google Scholar 

  158. Askari, M., Chung, T.S.: Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes. J. Memb. Sci. 444, 173–183 (2013)

    Article  CAS  Google Scholar 

  159. Díaz, K., López-González, M., Del Castillo, L.F., Riande, E.: Effect of zeolitic imidazolate frameworks on the gas transport performance of ZIF8-poly(1,4-phenylene ether-ether-sulfone) hybrid membranes. J. Memb. Sci. 383, 206–213 (2011)

    Article  CAS  Google Scholar 

  160. Diestel, L., Wang, N., Schwiedland, B., Steinbach, F., Giese, U., Caro, J.: MOF based MMMs with enhanced selectivity due to hindered linker distortion. J. Memb. Sci. 492, 181–186 (2015)

    Article  CAS  Google Scholar 

  161. Hao, L., Li, P., Yang, T., Chung, T.S.: Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. J. Memb. Sci. 436, 221–231 (2013)

    Article  CAS  Google Scholar 

  162. Yang, T., Chung, T.S.: Room-temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation. J. Mater. Chem. A. 1, 6081–6090 (2013)

    Article  CAS  Google Scholar 

  163. Lively, R.P., Dose, M.E., Xu, L., Vaughn, J.T., Johnson, J.R., Thompson, J.A., Zhang, K., Lydon, M.E., Lee, J.S., Liu, L., Hu, Z., Karvan, O., Realff, M.J., Koros, W.J.: A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO 2 recovery from flue gas. J. Memb. Sci. 423–424, 302–313 (2012)

    Article  CAS  Google Scholar 

  164. Ordoñez, M.J.C., Balkus, K.J., Ferraris, J.P., Musselman, I.H.: Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J. Memb. Sci. 361, 28–37 (2010)

    Article  CAS  Google Scholar 

  165. Song, Q., Nataraj, S.K., Roussenova, M.V., Tan, J.C., Hughes, D.J., Li, W., Bourgoin, P., Alam, M.A., Cheetham, A.K., Al-Muhtaseb, S.A., Sivaniah, E.: Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 5, 8359–8369 (2012)

    Article  CAS  Google Scholar 

  166. Thompson, J.A., Chapman, K.W., Koros, W.J., Jones, C.W., Nair, S.: Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes. Microporous Mesoporous Mater. 158, 292–299 (2012)

    Article  CAS  Google Scholar 

  167. Yang, T., Chung, T.S.: High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. Int. J. Hydrogen Energy 38, 229–239 (2013)

    Article  CAS  Google Scholar 

  168. Zhang, C., Dai, Y., Johnson, J.R., Karvan, O., Koros, W.J.: High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Memb. Sci. 389, 34–42 (2012)

    Article  CAS  Google Scholar 

  169. Carlin, D.J., Naujokas, M.F., Bradham, K.D., Cowden, J., Heacock, M., Henry, H.F., Lee, J.S., Thomas, D.J., Thompson, C., Tokar, E.J., Waalkes, M.P., Birnbaum, L.S., Suk, W.A.: Arsenic and environmental health: state of the science and future research opportunities. Environ. Health Perspect. 124, 890–899 (2016)

    Article  CAS  Google Scholar 

  170. Safak Boroglu, M., Yumru, A.B.: Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation. Sep. Purif. Technol. 173, 269–279 (2017)

    Article  CAS  Google Scholar 

  171. Wu, X., Liu, W., Wu, H., Zong, X., Yang, L., Wu, Y., Ren, Y., Shi, C., Wang, S., Jiang, Z.: Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance. J. Memb. Sci. 548, 309–318 (2018)

    Article  CAS  Google Scholar 

  172. Japip, S., Liao, K.S., Xiao, Y., Chung, T.S.: Enhancement of molecular-sieving properties by constructing surface nano-metric layer via vapor cross-linking. J. Memb. Sci. 497, 248–258 (2016)

    Article  CAS  Google Scholar 

  173. Japip, S., Wang, H., Xiao, Y., Chung, T.S.: Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation. J. Memb. Sci. 467, 162–174 (2014)

    Article  CAS  Google Scholar 

  174. Japip, S., Xiao, Y., Chung, T.S.: Particle-size effects on gas transport properties of 6FDA-Durene/ZIF-71 mixed matrix membranes. Ind. Eng. Chem. Res. 55, 9507–9517 (2016)

    Article  CAS  Google Scholar 

  175. Yong, W.F., Ho, Y.X., Chung, T.-S.: Nanoparticles embedded in amphiphilic membranes for carbon dioxide separation and dehumidification. Chemsuschem 10, 4046–4055 (2017)

    Article  CAS  Google Scholar 

  176. Sarfraz, M., Ba-Shammakh, M.: Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post combustion flue gas. J. Memb. Sci. 514, 35–43 (2016)

    Article  CAS  Google Scholar 

  177. Morris, W., Doonan, C.J., Furukawa, H., Banerjee, R., Yaghi, O.M.: Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks. J. Am. Chem. Soc. 130, 12626–12627 (2008)

    Article  CAS  Google Scholar 

  178. Wang, C., Liu, X., Keser Demir, N., Chen, J.P., Li, K.: Applications of water stable metal-organic frameworks. Chem. Soc. Rev. 45, 5107–5134 (2016)

    Article  CAS  Google Scholar 

  179. Elrasheedy, A., Nady, N., Bassyouni, M., El-Shazly, A.: Metal organic framework based polymer mixed matrix membranes: review on applications in water purification. Membranes (Basel) 9 88 (2019)

    Google Scholar 

  180. Férey, C., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., Margiolaki, I.: Chemistry: A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(80), 2040–2042 (2005)

    Google Scholar 

  181. Serre, C., Millange, F., Thouvenot, C., Noguès, M., Marsolier, G., Louër, D., Férey, G.: Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C-C6H4- CO2}·{HO2C-C6H4 -CO2H}x·H2Oy. J. Am. Chem. Soc. 124, 13519–13526 (2002)

    Article  CAS  Google Scholar 

  182. Guillerm, V., Ragon, F., Dan-Hardi, M., Devic, T., Vishnuvarthan, M., Campo, B., Vimont, A., Clet, G., Yang, Q., Maurin, G., Férey, G., Vittadini, A., Gross, S., Serre, C.: A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. Angew. Chemie - Int. Ed. 51, 9267–9271 (2012)

    Article  CAS  Google Scholar 

  183. Kadhom, M., Hu, W., Deng, B.: Thin film nanocomposite membrane filled with metal-organic frameworks UiO-66 and MIL-125 nanoparticles for water desalination. Membranes (Basel). 7, 31 (2017)

    Google Scholar 

  184. Ma, D., Peh, S.B., Han, G., Chen, S.B.: Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection. ACS Appl. Mater. Interfaces. 9, 7523–7534 (2017)

    Article  CAS  Google Scholar 

  185. Cavka, J.H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., Lillerud, K.P.: A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008)

    Article  CAS  Google Scholar 

  186. He, Y., Tang, Y.P., Ma, D., Chung, T.S.: UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal. J. Memb. Sci. 541, 262–270 (2017)

    Article  CAS  Google Scholar 

  187. Liu, X., Demir, N.K., Wu, Z., Li, K.: Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 137, 6999–7002 (2015)

    Article  CAS  Google Scholar 

  188. Ma, J., Guo, X., Ying, Y., Liu, D., Zhong, C.: Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance. Chem. Eng. J. 313, 890–898 (2017)

    Article  CAS  Google Scholar 

  189. Howarth, A.J., Katz, M.J., Wang, T.C., Platero-Prats, A.E., Chapman, K.W., Hupp, J.T., Farha, O.K.: High efficiency adsorption and removal of selenate and selenite from water using metal-organic frameworks. J. Am. Chem. Soc. 137, 7488–7494 (2015)

    Article  CAS  Google Scholar 

  190. Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F.: Crystallized frameworks with giant pores: are there limits to the possible? Acc. Chem. Res. 38, 217–225 (2005)

    Article  CAS  Google Scholar 

  191. Echaide-Górriz, C., Navarro, M., Téllez, C., Coronas, J.: Simultaneous use of MOFs MIL-101(Cr) and ZIF-11 in thin film nanocomposite membranes for organic solvent nanofiltration. Dalt. Trans. 46, 6244–6252 (2017)

    Article  Google Scholar 

  192. Echaide-Górriz, C., Sorribas, S., Téllez, C., Coronas, J.: MOF nanoparticles of MIL-68(Al), MIL-101(Cr) and ZIF-11 for thin film nanocomposite organic solvent nanofiltration membranes. RSC Adv. 6, 90417–90426 (2016)

    Article  CAS  Google Scholar 

  193. Navarro, M., Benito, J., Paseta, L., Gascón, I., Coronas, J., Téllez, C.: Thin-film nanocomposite membrane with the minimum amount of MOF by the langmuir-schaefer technique for nanofiltration. ACS Appl. Mater. Interfaces. 10, 1278–1287 (2018)

    Article  CAS  Google Scholar 

  194. Xu, Y., Gao, X., Wang, Q., Wang, X., Ji, Z., Gao, C.: Highly stable MIL-101(Cr) doped water permeable thin film nanocomposite membranes for water treatment. RSC Adv. 6, 82669–82675 (2016)

    Article  CAS  Google Scholar 

  195. Xu, Y., Gao, X., Wang, X., Wang, Q., Ji, Z., Wang, X., Wu, T., Gao, C.: Highly and stably water permeable thin film nanocomposite membranes doped with MIL-101 (Cr) nanoparticles for reverse osmosis application. Materials (Basel) 9 (2016)

    Google Scholar 

  196. Ma, X.H., Yang, Z., Yao, Z.K., Xu, Z.L., Tang, C.Y.: A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes. J. Memb. Sci. 525, 269–276 (2017)

    Article  CAS  Google Scholar 

  197. Aljundi, I.H.: Desalination characteristics of TFN-RO membrane incorporated with ZIF-8 nanoparticles. Desalination 420, 12–20 (2017)

    Article  CAS  Google Scholar 

  198. Hu, Z., Chen, Y., Jiang, J.: Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: Insight from molecular simulation. J. Chem. Phys. 134, 134705 (2011)

    Article  CAS  Google Scholar 

  199. Wang, F., Zheng, T., Xiong, R., Wang, P., Ma, J.: Strong improvement of reverse osmosis polyamide membrane performance by addition of ZIF-8 nanoparticles: Effect of particle size and dispersion in selective layer. Chemosphere 233, 524–531 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kaskel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kundu, T., Gilmanova, L., Yong, W.F., Kaskel, S. (2021). Metal-Organic Frameworks for Environmental Applications. In: Moreno-Piraján, J.C., Giraldo-Gutierrez, L., Gómez-Granados, F. (eds) Porous Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-65991-2_1

Download citation

Publish with us

Policies and ethics